Nuprl Definition : inductive-set

If bdd witnesses ⌜Bounded(A,a.R[A;a])⌝ then 
for _,S,B,_ bdd,  is bound on the "cardinality" of the A's
and ⌜λA.(fst((S A)))⌝ is the set {a R[A;a]}.

For any set x, the set ⌜closure-set(B;λA.(fst((S A)));x)⌝ will contain
all the sets for which R[A;a] for some ⌜(A ⊆ x)⌝.

So, the set defined inductively by is the closure of the
function ⌜λx.closure-set(B;λA.(fst((S A)));x)⌝.

This is proved in Error :inductive-set-property.⋅

inductive-set(bdd) ==  let _,S,B,_ bdd in least-closed-set(B;λx.closure-set(B;λz.(fst((S z)));x))  



Definitions occuring in Statement :  closure-set: closure-set(B;Y;x) least-closed-set: least-closed-set(B;G) spreadn: spread4 pi1: fst(t) apply: a lambda: λx.A[x]
Definitions occuring in definition :  spreadn: spread4 least-closed-set: least-closed-set(B;G) closure-set: closure-set(B;Y;x) lambda: λx.A[x] pi1: fst(t) apply: a
FDL editor aliases :  inductive-set

Latex:
inductive-set(bdd)  ==    let  $_{}$,S,B,$_{}$  =  bdd  in  least-cl\000Cosed-set(B;\mlambda{}x.closure-set(B;\mlambda{}z.(fst((S  z)));x))   



Date html generated: 2018_07_29-AM-10_10_14
Last ObjectModification: 2018_05_30-PM-06_48_46

Theory : constructive!set!theory


Home Index