Nuprl Definition : least-closed-set
By iterating over all the members of a regular set containg the transitive
closure of set B we can form the least set closed under function G,
provided that B is a bound for G in a suitable sense.
(Spelled out in the lemma Error :least-closed-set-inductively-defined).⋅
least-closed-set(B;G) ==   ⋃a∈regext(setTC(B)).itersetfun(x.G x;a)
Definitions occuring in Statement : 
regext: regext(a)
, 
itersetfun: itersetfun(s.G[s];a)
, 
setTC: setTC(a)
, 
setunionfun:  ⋃x∈s.f[x]
, 
apply: f a
Definitions occuring in definition : 
setunionfun:  ⋃x∈s.f[x]
, 
itersetfun: itersetfun(s.G[s];a)
, 
apply: f a
, 
regext: regext(a)
, 
setTC: Error :setTC
FDL editor aliases : 
least-closed-set
Latex:
least-closed-set(B;G)  ==      \mcup{}a\mmember{}regext(setTC(B)).itersetfun(x.G  x;a)
Date html generated:
2018_07_29-AM-10_09_38
Last ObjectModification:
2018_05_30-PM-07_02_38
Theory : constructive!set!theory
Home
Index