Nuprl Definition : inductively-defined
inductively-defined{i:l}(x,a.R[x; a];s) ==  closed(x,a.R[x; a])s ∧ (∀s':Set{i:l}. (closed(x,a.R[x; a])s' 
⇒ (s ⊆ s')))
Definitions occuring in Statement : 
relclosed-set: closed(x,a.R[x; a])s
, 
setsubset: (a ⊆ b)
, 
Set: Set{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions occuring in definition : 
setsubset: (a ⊆ b)
, 
relclosed-set: closed(x,a.R[x; a])s
, 
implies: P 
⇒ Q
, 
Set: Set{i:l}
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
FDL editor aliases : 
inductively-defined
Latex:
inductively-defined\{i:l\}(x,a.R[x;  a];s)  ==
    closed(x,a.R[x;  a])s  \mwedge{}  (\mforall{}s':Set\{i:l\}.  (closed(x,a.R[x;  a])s'  {}\mRightarrow{}  (s  \msubseteq{}  s')))
Date html generated:
2018_05_29-PM-01_54_19
Last ObjectModification:
2018_05_25-AM-09_19_11
Theory : constructive!set!theory
Home
Index