Nuprl Definition : inductively-defined

inductively-defined{i:l}(x,a.R[x; a];s) ==  closed(x,a.R[x; a])s ∧ (∀s':Set{i:l}. (closed(x,a.R[x; a])s'  (s ⊆ s')))



Definitions occuring in Statement :  relclosed-set: closed(x,a.R[x; a])s setsubset: (a ⊆ b) Set: Set{i:l} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions occuring in definition :  setsubset: (a ⊆ b) relclosed-set: closed(x,a.R[x; a])s implies:  Q Set: Set{i:l} all: x:A. B[x] and: P ∧ Q
FDL editor aliases :  inductively-defined

Latex:
inductively-defined\{i:l\}(x,a.R[x;  a];s)  ==
    closed(x,a.R[x;  a])s  \mwedge{}  (\mforall{}s':Set\{i:l\}.  (closed(x,a.R[x;  a])s'  {}\mRightarrow{}  (s  \msubseteq{}  s')))



Date html generated: 2018_05_29-PM-01_54_19
Last ObjectModification: 2018_05_25-AM-09_19_11

Theory : constructive!set!theory


Home Index