Step
*
of Lemma
I-path-morph_functionality
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I,K:Cname List. ∀f:name-morph(I;K). ∀alpha:X(I).
∀p,q:I-path(X;A;a;b;I;alpha).
(path-eq(X;A;I;alpha;p;q)
⇒ path-eq(X;A;K;f(alpha);I-path-morph(X;A;I;K;f;alpha;p);I-path-morph(X;A;I;K;f;alpha;q)))
BY
{ (Auto
THEN D -3
THEN D -2
THEN RepUR ``I-path-morph path-eq named-path-morph`` 0
THEN RepUR ``path-eq`` -1
THEN (GenConclTerm ⌜fresh-cname(K)⌝⋅ THENA Auto)
THEN Thin (-1)
THEN D -1
THEN (InstLemma `rename-one-same` [⌜K⌝]⋅ THENA Auto)
THEN RWO "-1" 0
THEN Auto) }
1
1. X : CubicalSet
2. A : {X ⊢ _}
3. a : {X ⊢ _:A}
4. b : {X ⊢ _:A}
5. I : Cname List
6. K : Cname List
7. f : name-morph(I;K)
8. alpha : X(I)
9. z : {z:Cname| ¬(z ∈ I)}
10. p1 : named-path(X;A;a;b;I;alpha;z)
11. z1 : {z:Cname| ¬(z ∈ I)}
12. q1 : named-path(X;A;a;b;I;alpha;z1)
13. (p1 iota(z)(alpha) rename-one-name(z;z1)) = q1 ∈ A(iota(z1)(alpha))
14. v : Cname
15. ¬(v ∈ K)
16. ∀z:Cname. rename-one-name(z;z) = 1 ∈ name-morph([z / K];[z / K]) supposing ¬(z ∈ K)
⊢ ((p1 iota(z)(alpha) f[z:=v]) iota(v)(f(alpha)) 1) = (q1 iota(z1)(alpha) f[z1:=v]) ∈ A(iota(v)(f(alpha)))
Latex:
Latex:
\mforall{}X:CubicalSet. \mforall{}A:\{X \mvdash{} \_\}. \mforall{}a,b:\{X \mvdash{} \_:A\}. \mforall{}I,K:Cname List. \mforall{}f:name-morph(I;K). \mforall{}alpha:X(I).
\mforall{}p,q:I-path(X;A;a;b;I;alpha).
(path-eq(X;A;I;alpha;p;q)
{}\mRightarrow{} path-eq(X;A;K;f(alpha);I-path-morph(X;A;I;K;f;alpha;p);I-path-morph(X;A;I;K;f;alpha;q)))
By
Latex:
(Auto
THEN D -3
THEN D -2
THEN RepUR ``I-path-morph path-eq named-path-morph`` 0
THEN RepUR ``path-eq`` -1
THEN (GenConclTerm \mkleeneopen{}fresh-cname(K)\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-1)
THEN D -1
THEN (InstLemma `rename-one-same` [\mkleeneopen{}K\mkleeneclose{}]\mcdot{} THENA Auto)
THEN RWO "-1" 0
THEN Auto)
Home
Index