Nuprl Definition : Kan-cubical-type

{X ⊢ _(Kan)} ==
  {p:A:{X ⊢ _} × (I:(Cname List)
                 ⟶ alpha:X(I)
                 ⟶ J:(nameset(I) List)
                 ⟶ x:nameset(I)
                 ⟶ i:ℕ2
                 ⟶ A-open-box(X;A;I;alpha;J;x;i)
                 ⟶ A(alpha))| 
   let A,filler 
   in Kan-A-filler(X;A;filler) ∧ uniform-Kan-A-filler(X;A;filler)} 



Definitions occuring in Statement :  uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) Kan-A-filler: Kan-A-filler(X;A;filler) A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-type-at: A(a) cubical-type: {X ⊢ _} I-cube: X(I) nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] natural_number: $n
Definitions occuring in definition :  set: {x:A| B[x]}  product: x:A × B[x] cubical-type: {X ⊢ _} coordinate_name: Cname I-cube: X(I) list: List nameset: nameset(L) int_seg: {i..j-} natural_number: $n function: x:A ⟶ B[x] A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-type-at: A(a) spread: spread def and: P ∧ Q Kan-A-filler: Kan-A-filler(X;A;filler) uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler)
FDL editor aliases :  Kan-cubical-type

Latex:
\{X  \mvdash{}  \_(Kan)\}  ==
    \{p:A:\{X  \mvdash{}  \_\}  \mtimes{}  (I:(Cname  List)
                                  {}\mrightarrow{}  alpha:X(I)
                                  {}\mrightarrow{}  J:(nameset(I)  List)
                                  {}\mrightarrow{}  x:nameset(I)
                                  {}\mrightarrow{}  i:\mBbbN{}2
                                  {}\mrightarrow{}  A-open-box(X;A;I;alpha;J;x;i)
                                  {}\mrightarrow{}  A(alpha))| 
      let  A,filler  =  p 
      in  Kan-A-filler(X;A;filler)  \mwedge{}  uniform-Kan-A-filler(X;A;filler)\} 



Date html generated: 2016_06_16-PM-06_43_56
Last ObjectModification: 2015_09_23-AM-09_32_10

Theory : cubical!sets


Home Index