Step
*
1
of Lemma
name-morph-flips-commute
1. I : Cname List
2. x : name-morph(I;[])
3. i : nameset(I)
4. j : nameset(I)
5. x1 : nameset(I)
⊢ (flip(flip(x;j);i) x1) = (flip(flip(x;i);j) x1) ∈ extd-nameset([])
BY
{ Assert ⌜(flip(flip(x;j);i) x1) = (flip(flip(x;i);j) x1) ∈ ℕ2⌝⋅ }
1
.....assertion.....
1. I : Cname List
2. x : name-morph(I;[])
3. i : nameset(I)
4. j : nameset(I)
5. x1 : nameset(I)
⊢ (flip(flip(x;j);i) x1) = (flip(flip(x;i);j) x1) ∈ ℕ2
2
1. I : Cname List
2. x : name-morph(I;[])
3. i : nameset(I)
4. j : nameset(I)
5. x1 : nameset(I)
6. (flip(flip(x;j);i) x1) = (flip(flip(x;i);j) x1) ∈ ℕ2
⊢ (flip(flip(x;j);i) x1) = (flip(flip(x;i);j) x1) ∈ extd-nameset([])
Latex:
Latex:
1. I : Cname List
2. x : name-morph(I;[])
3. i : nameset(I)
4. j : nameset(I)
5. x1 : nameset(I)
\mvdash{} (flip(flip(x;j);i) x1) = (flip(flip(x;i);j) x1)
By
Latex:
Assert \mkleeneopen{}(flip(flip(x;j);i) x1) = (flip(flip(x;i);j) x1)\mkleeneclose{}\mcdot{}
Home
Index