Step * 1 of Lemma open_box_image_wf


1. CubicalSet
2. Cname List
3. Cname List
4. Cname List
5. name-morph(I;K)
6. nameset(map(f;J)) ⊆nameset(K)
7. nameset(I)
8. ∀x:nameset([x J]). (f x ∈ nameset(K))
9. : ℕ2
10. nameset([x J]) ⊆name-morph-domain(f;I)
11. bx I-face(X;I) List
12. adjacent-compatible(X;I;bx)
∧ (x ∈ J))
∧ l_subset(Cname;J;I)
∧ ((∀y:nameset(J). ∀c:ℕ2.  (∃f∈bx. face-name(f) = <y, c> ∈ (nameset(I) × ℕ2)))
  ∧ (∃f∈bx. face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))
  ∧ (∀f∈bx.¬(face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))))
∧ (∀f∈bx.(fst(f) ∈ [x J]))
∧ (∀f1,f2∈bx.  ¬(face-name(f1) face-name(f2) ∈ (nameset(I) × ℕ2)))
13. ∀x:nameset(J). (f x ∈ nameset(K))
14. map(f;J) ∈ nameset(K) List
15. x ∈ nameset(K)
⊢ open_box_image(X;I;K;f;bx) ∈ open_box(X;K;map(f;J);f x;i)
BY
(Assert ⌜∀fc:I-face(X;I). ((fc ∈ bx)  (fst(fc) ∈ [x J]))⌝⋅
   THENA (Auto
          THEN RepeatFor (D -1)
          THEN OnMaybeHyp 17 (\h. ((With ⌜i1⌝ (D h)⋅ THENA Auto)
                                   THEN RevHypSubst' (-2) (-1)
                                   THEN Reduce (-1)
                                   THEN Complete (Auto))))
   }

1
1. CubicalSet
2. Cname List
3. Cname List
4. Cname List
5. name-morph(I;K)
6. nameset(map(f;J)) ⊆nameset(K)
7. nameset(I)
8. ∀x:nameset([x J]). (f x ∈ nameset(K))
9. : ℕ2
10. nameset([x J]) ⊆name-morph-domain(f;I)
11. bx I-face(X;I) List
12. adjacent-compatible(X;I;bx)
∧ (x ∈ J))
∧ l_subset(Cname;J;I)
∧ ((∀y:nameset(J). ∀c:ℕ2.  (∃f∈bx. face-name(f) = <y, c> ∈ (nameset(I) × ℕ2)))
  ∧ (∃f∈bx. face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))
  ∧ (∀f∈bx.¬(face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))))
∧ (∀f∈bx.(fst(f) ∈ [x J]))
∧ (∀f1,f2∈bx.  ¬(face-name(f1) face-name(f2) ∈ (nameset(I) × ℕ2)))
13. ∀x:nameset(J). (f x ∈ nameset(K))
14. map(f;J) ∈ nameset(K) List
15. x ∈ nameset(K)
16. ∀fc:I-face(X;I). ((fc ∈ bx)  (fst(fc) ∈ [x J]))
⊢ open_box_image(X;I;K;f;bx) ∈ open_box(X;K;map(f;J);f x;i)


Latex:


Latex:

1.  X  :  CubicalSet
2.  I  :  Cname  List
3.  J  :  Cname  List
4.  K  :  Cname  List
5.  f  :  name-morph(I;K)
6.  nameset(map(f;J))  \msubseteq{}r  nameset(K)
7.  x  :  nameset(I)
8.  \mforall{}x:nameset([x  /  J]).  (f  x  \mmember{}  nameset(K))
9.  i  :  \mBbbN{}2
10.  nameset([x  /  J])  \msubseteq{}r  name-morph-domain(f;I)
11.  bx  :  I-face(X;I)  List
12.  adjacent-compatible(X;I;bx)
\mwedge{}  (\mneg{}(x  \mmember{}  J))
\mwedge{}  l\_subset(Cname;J;I)
\mwedge{}  ((\mforall{}y:nameset(J).  \mforall{}c:\mBbbN{}2.    (\mexists{}f\mmember{}bx.  face-name(f)  =  <y,  c>))
    \mwedge{}  (\mexists{}f\mmember{}bx.  face-name(f)  =  <x,  i>)
    \mwedge{}  (\mforall{}f\mmember{}bx.\mneg{}(face-name(f)  =  <x,  1  -  i>)))
\mwedge{}  (\mforall{}f\mmember{}bx.(fst(f)  \mmember{}  [x  /  J]))
\mwedge{}  (\mforall{}f1,f2\mmember{}bx.    \mneg{}(face-name(f1)  =  face-name(f2)))
13.  \mforall{}x:nameset(J).  (f  x  \mmember{}  nameset(K))
14.  map(f;J)  \mmember{}  nameset(K)  List
15.  f  x  \mmember{}  nameset(K)
\mvdash{}  open\_box\_image(X;I;K;f;bx)  \mmember{}  open\_box(X;K;map(f;J);f  x;i)


By


Latex:
(Assert  \mkleeneopen{}\mforall{}fc:I-face(X;I).  ((fc  \mmember{}  bx)  {}\mRightarrow{}  (fst(fc)  \mmember{}  [x  /  J]))\mkleeneclose{}\mcdot{}
  THENA  (Auto
                THEN  RepeatFor  2  (D  -1)
                THEN  OnMaybeHyp  17  (\mbackslash{}h.  ((With  \mkleeneopen{}i1\mkleeneclose{}  (D  h)\mcdot{}  THENA  Auto)
                                                                  THEN  RevHypSubst'  (-2)  (-1)
                                                                  THEN  Reduce  (-1)
                                                                  THEN  Complete  (Auto))))
  )




Home Index