Nuprl Definition : poset-functor-extends

poset-functor-extends(C;I;L;E;F) ==
  (functor-ob(F) L ∈ (name-morph(I;[]) ⟶ cat-ob(C)))
  ∧ (∀i:nameset(I). ∀c:{c:name-morph(I;[])| (c i) 0 ∈ ℕ2} .
       ((functor-arrow(F) flip(c;i) x.Ax)) (E c) ∈ (cat-arrow(C) (L c) (L flip(c;i)))))



Definitions occuring in Statement :  name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) functor-arrow: functor-arrow(F) functor-ob: functor-ob(F) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) nil: [] int_seg: {i..j-} all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T axiom: Ax
Definitions occuring in definition :  and: P ∧ Q function: x:A ⟶ B[x] cat-ob: cat-ob(C) functor-ob: functor-ob(F) nameset: nameset(L) all: x:A. B[x] set: {x:A| B[x]}  name-morph: name-morph(I;J) nil: [] int_seg: {i..j-} natural_number: $n equal: t ∈ T cat-arrow: cat-arrow(C) functor-arrow: functor-arrow(F) name-morph-flip: flip(f;y) lambda: λx.A[x] axiom: Ax apply: a
FDL editor aliases :  poset-functor-extends

Latex:
poset-functor-extends(C;I;L;E;F)  ==
    (functor-ob(F)  =  L)
    \mwedge{}  (\mforall{}i:nameset(I).  \mforall{}c:\{c:name-morph(I;[])|  (c  i)  =  0\}  .
              ((functor-arrow(F)  c  flip(c;i)  (\mlambda{}x.Ax))  =  (E  i  c)))



Date html generated: 2016_06_16-PM-06_57_30
Last ObjectModification: 2015_09_23-AM-09_33_07

Theory : cubical!sets


Home Index