Step
*
of Lemma
unit-cube-cubical-type
∀[I:Cname List]
({unit-cube(I) ⊢ _} ~ {AF:A:L:(Cname List) ⟶ name-morph(I;L) ⟶ Type × (L:(Cname List)
⟶ J:(Cname List)
⟶ f:name-morph(L;J)
⟶ a:name-morph(I;L)
⟶ (A L a)
⟶ (A J (a o f)))|
let A,F = AF
in (∀K:Cname List. ∀a:name-morph(I;K). ∀u:A K a. ((F K K 1 a u) = u ∈ (A K a)))
∧ (∀L,J,K:Cname List. ∀f:name-morph(L;J). ∀g:name-morph(J;K). ∀a:name-morph(I;L). ∀u:A L a.
((F L K (f o g) a u) = (F J K g (a o f) (F L J f a u)) ∈ (A K (a o (f o g)))))} )
BY
{ ((D 0 THENA Auto) THEN RepUR ``cubical-type unit-cube I-cube functor-ob cube-set-restriction`` 0 THEN EqCD) }
Latex:
Latex:
\mforall{}[I:Cname List]
(\{unit-cube(I) \mvdash{} \_\} \msim{} \{AF:A:L:(Cname List) {}\mrightarrow{} name-morph(I;L) {}\mrightarrow{} Type \mtimes{} (L:(Cname List)
{}\mrightarrow{} J:(Cname List)
{}\mrightarrow{} f:name-morph(L;J)
{}\mrightarrow{} a:name-morph(I;L)
{}\mrightarrow{} (A L a)
{}\mrightarrow{} (A J (a o f)))|
let A,F = AF
in (\mforall{}K:Cname List. \mforall{}a:name-morph(I;K). \mforall{}u:A K a. ((F K K 1 a u) = u))
\mwedge{} (\mforall{}L,J,K:Cname List. \mforall{}f:name-morph(L;J). \mforall{}g:name-morph(J;K).
\mforall{}a:name-morph(I;L). \mforall{}u:A L a.
((F L K (f o g) a u) = (F J K g (a o f) (F L J f a u))))\} )
By
Latex:
((D 0 THENA Auto)
THEN RepUR ``cubical-type unit-cube I-cube functor-ob cube-set-restriction`` 0
THEN EqCD)
Home
Index