Step * 1 1 of Lemma assert-fl-eq


1. fset(ℕ)
2. Point(face_lattice(I))
3. Point(face_lattice(I))
4. Point(face_lattice(I)) ⊆Point(free-DeMorgan-lattice(names(I);NamesDeq))
5. EqDecider(Point(free-DeMorgan-lattice(names(I);NamesDeq)))
6. free-dml-deq(names(I);NamesDeq) v ∈ EqDecider(Point(free-DeMorgan-lattice(names(I);NamesDeq)))
⊢ uiff(↑(v y);x y ∈ Point(face_lattice(I)))
BY
Assert ⌜uiff(x y ∈ Point(free-DeMorgan-lattice(names(I);NamesDeq));x y ∈ Point(face_lattice(I)))⌝⋅ }

1
.....assertion..... 
1. fset(ℕ)
2. Point(face_lattice(I))
3. Point(face_lattice(I))
4. Point(face_lattice(I)) ⊆Point(free-DeMorgan-lattice(names(I);NamesDeq))
5. EqDecider(Point(free-DeMorgan-lattice(names(I);NamesDeq)))
6. free-dml-deq(names(I);NamesDeq) v ∈ EqDecider(Point(free-DeMorgan-lattice(names(I);NamesDeq)))
⊢ uiff(x y ∈ Point(free-DeMorgan-lattice(names(I);NamesDeq));x y ∈ Point(face_lattice(I)))

2
1. fset(ℕ)
2. Point(face_lattice(I))
3. Point(face_lattice(I))
4. Point(face_lattice(I)) ⊆Point(free-DeMorgan-lattice(names(I);NamesDeq))
5. EqDecider(Point(free-DeMorgan-lattice(names(I);NamesDeq)))
6. free-dml-deq(names(I);NamesDeq) v ∈ EqDecider(Point(free-DeMorgan-lattice(names(I);NamesDeq)))
7. uiff(x y ∈ Point(free-DeMorgan-lattice(names(I);NamesDeq));x y ∈ Point(face_lattice(I)))
⊢ uiff(↑(v y);x y ∈ Point(face_lattice(I)))


Latex:


Latex:

1.  I  :  fset(\mBbbN{})
2.  x  :  Point(face\_lattice(I))
3.  y  :  Point(face\_lattice(I))
4.  Point(face\_lattice(I))  \msubseteq{}r  Point(free-DeMorgan-lattice(names(I);NamesDeq))
5.  v  :  EqDecider(Point(free-DeMorgan-lattice(names(I);NamesDeq)))
6.  free-dml-deq(names(I);NamesDeq)  =  v
\mvdash{}  uiff(\muparrow{}(v  x  y);x  =  y)


By


Latex:
Assert  \mkleeneopen{}uiff(x  =  y;x  =  y)\mkleeneclose{}\mcdot{}




Home Index