Step
*
of Lemma
comp-to-fill_wf
No Annotations
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:composition-function{j:l,i:l}(Gamma;A)].
(comp-to-fill(Gamma;cA) ∈ filling-function{j:l, i:l}(Gamma;A))
BY
{ (Auto
THEN Unfold `composition-function` -1
THEN Unfolds ``comp-to-fill filling-function`` 0
THEN RepeatFor 5 (((FunExt THENA Auto) THEN Reduce 0))
THEN (Assert ((phi)p)m ∈ {H.𝕀.𝕀 ⊢ _:𝔽} BY
((Assert p ∈ H.𝕀 j⟶ H BY Auto) THEN (Assert m ∈ H.𝕀.𝕀 j⟶ H.𝕀 BY Auto) THEN Auto))
THEN (Assert (u)m ∈ {H.𝕀.𝕀, ((phi)p)m ⊢ _:((A)sigma)m} BY
((MemCD THEN Try (Trivial) THEN Thin (-2)) THEN Auto))
THEN Assert ⌜((a0)p)m ∈ {H.𝕀.𝕀, ((q=0))p ⊢ _:(A)sigma o m}⌝⋅) }
1
.....assertion.....
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. cA : H:CubicalSet{j}
⟶ sigma:H.𝕀 j⟶ Gamma
⟶ phi:{H ⊢ _:𝔽}
⟶ u:{H, phi.𝕀 ⊢ _:(A)sigma}
⟶ a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}
⟶ {H ⊢ _:((A)sigma)[1(𝕀)][phi |⟶ (u)[1(𝕀)]]}
4. H : CubicalSet{j}
5. sigma : H.𝕀 j⟶ Gamma
6. phi : {H ⊢ _:𝔽}
7. u : {H.𝕀, (phi)p ⊢ _:(A)sigma}
8. a0 : {H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ u[0]]}
9. ((phi)p)m ∈ {H.𝕀.𝕀 ⊢ _:𝔽}
10. (u)m ∈ {H.𝕀.𝕀, ((phi)p)m ⊢ _:((A)sigma)m}
⊢ ((a0)p)m ∈ {H.𝕀.𝕀, ((q=0))p ⊢ _:(A)sigma o m}
2
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. cA : H:CubicalSet{j}
⟶ sigma:H.𝕀 j⟶ Gamma
⟶ phi:{H ⊢ _:𝔽}
⟶ u:{H, phi.𝕀 ⊢ _:(A)sigma}
⟶ a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}
⟶ {H ⊢ _:((A)sigma)[1(𝕀)][phi |⟶ (u)[1(𝕀)]]}
4. H : CubicalSet{j}
5. sigma : H.𝕀 j⟶ Gamma
6. phi : {H ⊢ _:𝔽}
7. u : {H.𝕀, (phi)p ⊢ _:(A)sigma}
8. a0 : {H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ u[0]]}
9. ((phi)p)m ∈ {H.𝕀.𝕀 ⊢ _:𝔽}
10. (u)m ∈ {H.𝕀.𝕀, ((phi)p)m ⊢ _:((A)sigma)m}
11. ((a0)p)m ∈ {H.𝕀.𝕀, ((q=0))p ⊢ _:(A)sigma o m}
⊢ cA H.𝕀 sigma o m ((phi)p ∨ (q=0)) ((u)m ∨ ((a0)p)m) (a0)p ∈ {H.𝕀 ⊢ _:(A)sigma[(phi)p |⟶ u]}
Latex:
Latex:
No Annotations
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma \mvdash{} \_\}]. \mforall{}[cA:composition-function\{j:l,i:l\}(Gamma;A)].
(comp-to-fill(Gamma;cA) \mmember{} filling-function\{j:l, i:l\}(Gamma;A))
By
Latex:
(Auto
THEN Unfold `composition-function` -1
THEN Unfolds ``comp-to-fill filling-function`` 0
THEN RepeatFor 5 (((FunExt THENA Auto) THEN Reduce 0))
THEN (Assert ((phi)p)m \mmember{} \{H.\mBbbI{}.\mBbbI{} \mvdash{} \_:\mBbbF{}\} BY
((Assert p \mmember{} H.\mBbbI{} j{}\mrightarrow{} H BY Auto) THEN (Assert m \mmember{} H.\mBbbI{}.\mBbbI{} j{}\mrightarrow{} H.\mBbbI{} BY Auto) THEN Auto))
THEN (Assert (u)m \mmember{} \{H.\mBbbI{}.\mBbbI{}, ((phi)p)m \mvdash{} \_:((A)sigma)m\} BY
((MemCD THEN Try (Trivial) THEN Thin (-2)) THEN Auto))
THEN Assert \mkleeneopen{}((a0)p)m \mmember{} \{H.\mBbbI{}.\mBbbI{}, ((q=0))p \mvdash{} \_:(A)sigma o m\}\mkleeneclose{}\mcdot{})
Home
Index