Nuprl Lemma : comp_term-composition-term
∀[Gamma,phi,cA,u,a0:Top].  (comp cop-to-cfun(cA) [phi ⊢→ u] a0 ~ comp cA [phi ⊢→ u] a0)
Proof
Definitions occuring in Statement : 
comp_term: comp cA [phi ⊢→ u] a0
, 
comp-op-to-comp-fun: cop-to-cfun(cA)
, 
composition-term: comp cA [phi ⊢→ u] a0
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
composition-term: comp cA [phi ⊢→ u] a0
, 
comp-op-to-comp-fun: cop-to-cfun(cA)
, 
comp_term: comp cA [phi ⊢→ u] a0
, 
csm-composition: (comp)sigma
, 
cubical-term-at: u(a)
, 
cc-adjoin-cube: (v;u)
, 
subset-iota: iota
, 
csm-comp: G o F
, 
csm-ap-term: (t)s
, 
csm-id: 1(X)
, 
csm-ap: (s)x
, 
compose: f o g
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[Gamma,phi,cA,u,a0:Top].    (comp  cop-to-cfun(cA)  [phi  \mvdash{}\mrightarrow{}  u]  a0  \msim{}  comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)
Date html generated:
2018_05_23-AM-10_33_47
Last ObjectModification:
2018_05_20-PM-07_39_55
Theory : cubical!type!theory
Home
Index