Nuprl Lemma : comp_term-composition-term

[Gamma,phi,cA,u,a0:Top].  (comp cop-to-cfun(cA) [phi ⊢→ u] a0 comp cA [phi ⊢→ u] a0)


Proof




Definitions occuring in Statement :  comp_term: comp cA [phi ⊢→ u] a0 comp-op-to-comp-fun: cop-to-cfun(cA) composition-term: comp cA [phi ⊢→ u] a0 uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] composition-term: comp cA [phi ⊢→ u] a0 comp-op-to-comp-fun: cop-to-cfun(cA) comp_term: comp cA [phi ⊢→ u] a0 csm-composition: (comp)sigma cubical-term-at: u(a) cc-adjoin-cube: (v;u) subset-iota: iota csm-comp: F csm-ap-term: (t)s csm-id: 1(X) csm-ap: (s)x compose: g member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule because_Cache cut introduction extract_by_obid hypothesis

Latex:
\mforall{}[Gamma,phi,cA,u,a0:Top].    (comp  cop-to-cfun(cA)  [phi  \mvdash{}\mrightarrow{}  u]  a0  \msim{}  comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)



Date html generated: 2018_05_23-AM-10_33_47
Last ObjectModification: 2018_05_20-PM-07_39_55

Theory : cubical!type!theory


Home Index