Nuprl Lemma : csm-case-term
∀[phi,u,v,s:Top].  (((u ∨ v))s ~ ((u)s ∨ (v)s))
Proof
Definitions occuring in Statement : 
case-term: (u ∨ v)
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
case-term: (u ∨ v)
, 
csm-ap-term: (t)s
, 
cubical-term-at: u(a)
, 
csm-ap: (s)x
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[phi,u,v,s:Top].    (((u  \mvee{}  v))s  \msim{}  ((u)s  \mvee{}  (v)s))
Date html generated:
2018_05_23-AM-09_32_30
Last ObjectModification:
2018_05_20-PM-06_35_00
Theory : cubical!type!theory
Home
Index