Step
*
1
1
of Lemma
csm-cubical-path-0-subtype2
1. [Gamma] : CubicalSet{j}
2. [Delta] : CubicalSet{j}
3. [sigma] : Delta j⟶ Gamma
4. [A] : {Gamma ⊢ _}
5. [I] : fset(ℕ)
6. [i] : {i:ℕ| ¬i ∈ I}
7. [rho] : Delta(I+i)
8. [phi] : 𝔽(I)
9. [u1] : {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}
10. cubical-path-0(Delta;(A)sigma;I;i;rho;phi;u1) ⊆r cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u1)
11. [u2] : {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}
12. [%1] : u1 = u2 ∈ {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}
13. ∀[u:{I+i,s(phi) ⊢ _:(A)<(sigma)rho> o iota}]. (cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u) ∈ 𝕌{[i' | j']})
⊢ cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u1) ⊆r cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u2)
BY
{ Assert ⌜{I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota} = {I+i,s(phi) ⊢ _:(A)<(sigma)rho> o iota} ∈ 𝕌{[i' | j']}⌝⋅ }
1
.....assertion.....
1. Gamma : CubicalSet{j}
2. Delta : CubicalSet{j}
3. sigma : Delta j⟶ Gamma
4. A : {Gamma ⊢ _}
5. I : fset(ℕ)
6. i : {i:ℕ| ¬i ∈ I}
7. rho : Delta(I+i)
8. phi : 𝔽(I)
9. u1 : {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}
10. cubical-path-0(Delta;(A)sigma;I;i;rho;phi;u1) ⊆r cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u1)
11. u2 : {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}
12. u1 = u2 ∈ {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}
13. ∀[u:{I+i,s(phi) ⊢ _:(A)<(sigma)rho> o iota}]. (cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u) ∈ 𝕌{[i' | j']})
⊢ {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota} = {I+i,s(phi) ⊢ _:(A)<(sigma)rho> o iota} ∈ 𝕌{[i' | j']}
2
1. [Gamma] : CubicalSet{j}
2. [Delta] : CubicalSet{j}
3. [sigma] : Delta j⟶ Gamma
4. [A] : {Gamma ⊢ _}
5. [I] : fset(ℕ)
6. [i] : {i:ℕ| ¬i ∈ I}
7. [rho] : Delta(I+i)
8. [phi] : 𝔽(I)
9. [u1] : {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}
10. cubical-path-0(Delta;(A)sigma;I;i;rho;phi;u1) ⊆r cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u1)
11. [u2] : {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}
12. [%1] : u1 = u2 ∈ {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}
13. ∀[u:{I+i,s(phi) ⊢ _:(A)<(sigma)rho> o iota}]. (cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u) ∈ 𝕌{[i' | j']})
14. {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota} = {I+i,s(phi) ⊢ _:(A)<(sigma)rho> o iota} ∈ 𝕌{[i' | j']}
⊢ cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u1) ⊆r cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u2)
Latex:
Latex:
1. [Gamma] : CubicalSet\{j\}
2. [Delta] : CubicalSet\{j\}
3. [sigma] : Delta j{}\mrightarrow{} Gamma
4. [A] : \{Gamma \mvdash{} \_\}
5. [I] : fset(\mBbbN{})
6. [i] : \{i:\mBbbN{}| \mneg{}i \mmember{} I\}
7. [rho] : Delta(I+i)
8. [phi] : \mBbbF{}(I)
9. [u1] : \{I+i,s(phi) \mvdash{} \_:((A)sigma)<rho> o iota\}
10. cubical-path-0(Delta;(A)sigma;I;i;rho;phi;u1) \msubseteq{}r cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u1)
11. [u2] : \{I+i,s(phi) \mvdash{} \_:((A)sigma)<rho> o iota\}
12. [\%1] : u1 = u2
13. \mforall{}[u:\{I+i,s(phi) \mvdash{} \_:(A)<(sigma)rho> o iota\}]
(cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u) \mmember{} \mBbbU{}\{[i' | j']\})
\mvdash{} cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u1) \msubseteq{}r cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u2)
By
Latex:
Assert \mkleeneopen{}\{I+i,s(phi) \mvdash{} \_:((A)sigma)<rho> o iota\} = \{I+i,s(phi) \mvdash{} \_:(A)<(sigma)rho> o iota\}\mkleeneclose{}\mcdot{}
Home
Index