Nuprl Lemma : csm-discrete-family
∀[A,B,s:Top].  ((discrete-family(A;a.B[a]))(s;q) ~ discrete-family(A;a.B[a]))
Proof
Definitions occuring in Statement : 
discrete-family: discrete-family(A;a.B[a])
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
csm-ap-type: (AF)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
pi2: snd(t)
, 
csm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
csm-ap-type: (AF)s
, 
discrete-family: discrete-family(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
because_Cache, 
sqequalRule, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A,B,s:Top].    ((discrete-family(A;a.B[a]))(s;q)  \msim{}  discrete-family(A;a.B[a]))
Date html generated:
2017_02_21-AM-10_44_57
Last ObjectModification:
2017_02_16-PM-03_22_17
Theory : cubical!type!theory
Home
Index