Step
*
1
1
of Lemma
csm-equiv-comp
.....assertion.....
1. H : CubicalSet{j}
2. K : CubicalSet{j}
3. tau : K j⟶ H
4. A : {H ⊢ _}
5. E : {H ⊢ _}
6. cA : H ⊢ CompOp(A)
7. cE : H ⊢ CompOp(E)
⊢ K ⊢ CompOp((Equiv(A;E))tau) = K ⊢ CompOp(Equiv((A)tau;(E)tau)) ∈ 𝕌{[i'' | j'']}
BY
{ (EqCDA THEN InstLemma `csm-cubical-equiv` [⌜H⌝;⌜K⌝;⌜tau⌝;⌜A⌝;⌜E⌝]⋅ THEN Auto) }
Latex:
Latex:
.....assertion.....
1. H : CubicalSet\{j\}
2. K : CubicalSet\{j\}
3. tau : K j{}\mrightarrow{} H
4. A : \{H \mvdash{} \_\}
5. E : \{H \mvdash{} \_\}
6. cA : H \mvdash{} CompOp(A)
7. cE : H \mvdash{} CompOp(E)
\mvdash{} K \mvdash{} CompOp((Equiv(A;E))tau) = K \mvdash{} CompOp(Equiv((A)tau;(E)tau))
By
Latex:
(EqCDA THEN InstLemma `csm-cubical-equiv` [\mkleeneopen{}H\mkleeneclose{};\mkleeneopen{}K\mkleeneclose{};\mkleeneopen{}tau\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}E\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index