Nuprl Lemma : csm-path_comp

[G,H,A,a,b,cA,tau:Top].  ((path_comp(G;A;a;b;cA))tau path_comp(H;(A)tau;(a)tau;(b)tau;(cA)tau))


Proof




Definitions occuring in Statement :  path_comp: path_comp csm-comp-structure: (cA)tau csm-ap-term: (t)s csm-ap-type: (AF)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] csm-comp-structure: (cA)tau path_comp: path_comp cc-snd: q cc-fst: p csm-ap-term: (t)s csm+: tau+ csm-comp: F csm-ap: (s)x csm-ap-type: (AF)s csm-adjoin: (s;u) compose: g member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule because_Cache cut introduction extract_by_obid hypothesis

Latex:
\mforall{}[G,H,A,a,b,cA,tau:Top].    ((path\_comp(G;A;a;b;cA))tau  \msim{}  path\_comp(H;(A)tau;(a)tau;(b)tau;(cA)tau))



Date html generated: 2018_05_23-AM-11_03_11
Last ObjectModification: 2018_05_20-PM-08_13_13

Theory : cubical!type!theory


Home Index