Step
*
1
of Lemma
csm-rev-type-line
1. G : CubicalSet{j}
2. K : CubicalSet{j}
3. A1 : I:fset(ā) ā¶ G.š(I) ā¶ Type
4. A2 : I:fset(ā) ā¶ J:fset(ā) ā¶ f:J ā¶ I ā¶ a:G.š(I) ā¶ (A1 I a) ā¶ (A1 J f(a))
5. let A,F = <A1, A2>
in (āI:fset(ā). āa:G.š(I). āu:A I a. ((F I I 1 a u) = u ā (A I a)))
ā§ (āI,J,K:fset(ā). āf:J ā¶ I. āg:K ā¶ J. āa:G.š(I). āu:A I a.
((F I K f ā
g a u) = (F J K g f(a) (F I J f a u)) ā (A K f ā
g(a))))
6. tau : K jā¶ G
ā¢ <Ī»I,a. (A1 I <tau I (fst(a)), Ā¬(snd(a))>), Ī»I,J,f,a,u. (A2 I J f <tau I (fst(a)), Ā¬(snd(a))> u)>
= <Ī»I,a. (A1 I <tau I (fst(a)), Ā¬(snd(a))>), Ī»I,J,f,a,u. (A2 I J f <tau I (fst(a)), Ā¬(snd(a))> u)>
ā (A:I:fset(ā) ā¶ K.<Ī»I,alpha. š(I), Ī»I,J,f,alpha,w. f(w)>(I) ā¶ Type Ć (I:fset(ā)
ā¶ J:fset(ā)
ā¶ f:J ā¶ I
ā¶ a:K.<Ī»I,alpha. š(I), Ī»I,J,f,alpha,w. f(w)>(I)
ā¶ (A I a)
ā¶ (A J f(a))))
BY
{ (All (RepUR ``cube-context-adjoin``)
THEN (All (RWO "interval-type-at") THENA Auto)
THEN All (RepUR ``interval-presheaf``)
THEN EqCD
THEN ((RepeatFor 2 ((FunExt THENA Auto)) THEN Reduce 0) ORELSE Auto)
THEN ((RepeatFor 3 ((FunExt THENA Auto)) THEN Reduce 0) ORELSE Auto)) }
1
1. G : CubicalSet{j}
2. K : CubicalSet{j}
3. A1 : I:fset(ā) ā¶ (alpha:G(I) Ć Point(dM(I))) ā¶ Type
4. A2 : I:fset(ā)
ā¶ J:fset(ā)
ā¶ f:J ā¶ I
ā¶ a:(alpha:G(I) Ć Point(dM(I)))
ā¶ (A1 I a)
ā¶ (A1 J <f(fst(a)), (snd(a) fst(a) f)>)
5. (āI:fset(ā). āa:alpha:G(I) Ć Point(dM(I)). āu:A1 I a. ((A2 I I 1 a u) = u ā (A1 I a)))
ā§ (āI,J,K:fset(ā). āf:J ā¶ I. āg:K ā¶ J. āa:alpha:G(I) Ć Point(dM(I)). āu:A1 I a.
((A2 I K f ā
g a u)
= (A2 J K g <f(fst(a)), (snd(a) fst(a) f)> (A2 I J f a u))
ā (A1 K <f ā
g(fst(a)), (snd(a) fst(a) f ā
g)>)))
6. tau : K jā¶ G
7. I : fset(ā)
8. J : fset(ā)
9. f : J ā¶ I
10. a : alpha:K(I) Ć Point(dM(I))
11. x : A1 I <tau I (fst(a)), Ā¬(snd(a))>
ā¢ A2 I J f <tau I (fst(a)), Ā¬(snd(a))> x ā A1 J <tau J f(fst(a)), Ā¬(dM-lift(J;I;f) (snd(a)))>
Latex:
Latex:
1. G : CubicalSet\{j\}
2. K : CubicalSet\{j\}
3. A1 : I:fset(\mBbbN{}) {}\mrightarrow{} G.\mBbbI{}(I) {}\mrightarrow{} Type
4. A2 : I:fset(\mBbbN{}) {}\mrightarrow{} J:fset(\mBbbN{}) {}\mrightarrow{} f:J {}\mrightarrow{} I {}\mrightarrow{} a:G.\mBbbI{}(I) {}\mrightarrow{} (A1 I a) {}\mrightarrow{} (A1 J f(a))
5. let A,F = <A1, A2>
in (\mforall{}I:fset(\mBbbN{}). \mforall{}a:G.\mBbbI{}(I). \mforall{}u:A I a. ((F I I 1 a u) = u))
\mwedge{} (\mforall{}I,J,K:fset(\mBbbN{}). \mforall{}f:J {}\mrightarrow{} I. \mforall{}g:K {}\mrightarrow{} J. \mforall{}a:G.\mBbbI{}(I). \mforall{}u:A I a.
((F I K f \mcdot{} g a u) = (F J K g f(a) (F I J f a u))))
6. tau : K j{}\mrightarrow{} G
\mvdash{} <\mlambda{}I,a. (A1 I <tau I (fst(a)), \mneg{}(snd(a))>), \mlambda{}I,J,f,a,u. (A2 I J f <tau I (fst(a)), \mneg{}(snd(a))> u)>
= <\mlambda{}I,a. (A1 I <tau I (fst(a)), \mneg{}(snd(a))>), \mlambda{}I,J,f,a,u. (A2 I J f <tau I (fst(a)), \mneg{}(snd(a))> u)>
By
Latex:
(All (RepUR ``cube-context-adjoin``)
THEN (All (RWO "interval-type-at") THENA Auto)
THEN All (RepUR ``interval-presheaf``)
THEN EqCD
THEN ((RepeatFor 2 ((FunExt THENA Auto)) THEN Reduce 0) ORELSE Auto)
THEN ((RepeatFor 3 ((FunExt THENA Auto)) THEN Reduce 0) ORELSE Auto))
Home
Index