Nuprl Lemma : cube-context-adjoin-I_cube

[Gamma,A,I:Top].  (Gamma.A(I) alpha:Gamma(I) × A(alpha))


Proof




Definitions occuring in Statement :  cube-context-adjoin: X.A cubical-type-at: A(a) I_cube: A(I) uall: [x:A]. B[x] top: Top product: x:A × B[x] sqequal: t
Definitions unfolded in proof :  I_cube: A(I) I_set: A(I) cube-context-adjoin: X.A psc-adjoin: X.A cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f)
Lemmas referenced :  psc-adjoin-I_set
Rules used in proof :  cut introduction extract_by_obid sqequalRule sqequalReflexivity sqequalSubstitution sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[Gamma,A,I:Top].    (Gamma.A(I)  \msim{}  alpha:Gamma(I)  \mtimes{}  A(alpha))



Date html generated: 2018_05_23-AM-08_47_36
Last ObjectModification: 2018_05_20-PM-05_57_23

Theory : cubical!type!theory


Home Index