Nuprl Lemma : cube-context-adjoin-I_cube
∀[Gamma,A,I:Top].  (Gamma.A(I) ~ alpha:Gamma(I) × A(alpha))
Proof
Definitions occuring in Statement : 
cube-context-adjoin: X.A
, 
cubical-type-at: A(a)
, 
I_cube: A(I)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
product: x:A × B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
I_cube: A(I)
, 
I_set: A(I)
, 
cube-context-adjoin: X.A
, 
psc-adjoin: X.A
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
Lemmas referenced : 
psc-adjoin-I_set
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalReflexivity, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[Gamma,A,I:Top].    (Gamma.A(I)  \msim{}  alpha:Gamma(I)  \mtimes{}  A(alpha))
Date html generated:
2018_05_23-AM-08_47_36
Last ObjectModification:
2018_05_20-PM-05_57_23
Theory : cubical!type!theory
Home
Index