Step * 1 of Lemma cubical-id-equiv-subset


1. Top
2. phi Top
3. Top
⊢ cubical-pair((q)p q;path-contraction(G, phi.A.(A)p.(Path_((A)p)p (q)p q);q))) 
cubical-pair((q)p q;path-contraction(G.A.(A)p.(Path_((A)p)p (q)p q);q)))
BY
Subst' path-contraction(G, phi.A.(A)p.(Path_((A)p)p (q)p q);q) 
path-contraction(G.A.(A)p.(Path_((A)p)p (q)p q);q) }

1
.....equality..... 
1. Top
2. phi Top
3. Top
⊢ path-contraction(G, phi.A.(A)p.(Path_((A)p)p (q)p q);q) path-contraction(G.A.(A)p.(Path_((A)p)p (q)p q);q)

2
1. Top
2. phi Top
3. Top
⊢ cubical-pair((q)p q;path-contraction(G.A.(A)p.(Path_((A)p)p (q)p q);q))) 
cubical-pair((q)p q;path-contraction(G.A.(A)p.(Path_((A)p)p (q)p q);q)))


Latex:


Latex:

1.  G  :  Top
2.  phi  :  Top
3.  A  :  Top
\mvdash{}  (\mlambda{}cubical-pair((q)p  @  q;path-contraction(G,  phi.A.(A)p.(Path\_((A)p)p  (q)p  q);q))) 
\msim{}  (\mlambda{}cubical-pair((q)p  @  q;path-contraction(G.A.(A)p.(Path\_((A)p)p  (q)p  q);q)))


By


Latex:
Subst'  path-contraction(G,  phi.A.(A)p.(Path\_((A)p)p  (q)p  q);q) 
\msim{}  path-contraction(G.A.(A)p.(Path\_((A)p)p  (q)p  q);q)  0




Home Index