Step
*
of Lemma
cubical-subst_wf
No Annotations
∀[G:j⊢]. ∀[A:{G ⊢' _}]. ∀[a,b:{G ⊢ _:A}]. ∀[p:{G ⊢ _:(Path_A a b)}]. ∀[f:{G ⊢ _:(A ⟶ c𝕌)}].
∀[x:{G ⊢ _:decode(app(f; a))}].
(cubical-subst(G;f;p;x) ∈ {G ⊢ _:decode(app(f; b))})
BY
{ (RepeatFor 6 (Intro⋅)
THEN (InstLemma `cubical-app_wf_fun` [⌜parm{j}⌝;⌜parm{i'}⌝;⌜G⌝;⌜A⌝;⌜c𝕌⌝;⌜f⌝;⌜a⌝]⋅ THENA Auto)
THEN (InstLemma `cubical-app_wf_fun` [⌜parm{j}⌝;⌜parm{i'}⌝;⌜G⌝;⌜A⌝;⌜c𝕌⌝;⌜f⌝;⌜b⌝]⋅ THENA Auto)
THEN Intro⋅
THEN (Assert map-path(G;f;p) ∈ {G ⊢ _:(Path_c𝕌 app(f; a) app(f; b))} BY
(InstLemma `map-path_wf` [⌜parm{j}⌝;⌜parm{i'}⌝]⋅ THEN BHyp -1 THEN Auto))
THEN ProveWfLemma) }
Latex:
Latex:
No Annotations
\mforall{}[G:j\mvdash{}]. \mforall{}[A:\{G \mvdash{}' \_\}]. \mforall{}[a,b:\{G \mvdash{} \_:A\}]. \mforall{}[p:\{G \mvdash{} \_:(Path\_A a b)\}]. \mforall{}[f:\{G \mvdash{} \_:(A {}\mrightarrow{} c\mBbbU{})\}].
\mforall{}[x:\{G \mvdash{} \_:decode(app(f; a))\}].
(cubical-subst(G;f;p;x) \mmember{} \{G \mvdash{} \_:decode(app(f; b))\})
By
Latex:
(RepeatFor 6 (Intro\mcdot{})
THEN (InstLemma `cubical-app\_wf\_fun` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}c\mBbbU{}\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `cubical-app\_wf\_fun` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}c\mBbbU{}\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Intro\mcdot{}
THEN (Assert map-path(G;f;p) \mmember{} \{G \mvdash{} \_:(Path\_c\mBbbU{} app(f; a) app(f; b))\} BY
(InstLemma `map-path\_wf` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{}]\mcdot{} THEN BHyp -1 THEN Auto))
THEN ProveWfLemma)
Home
Index