Step
*
1
of Lemma
dM-lift-is-id2
1. I : fset(ℕ)
2. J : {J:fset(ℕ)| I ⊆ J}
3. K : {K:fset(ℕ)| I ⊆ K}
4. h : K ⟶ J
5. ∀i:names(I). ((h i) = <i> ∈ Point(dM(K)))
6. x : Point(dM(I))
7. dM-lift(K;J;h) o (λv.v) ∈ dma-hom(dM(I);dM(K))
8. (dM-lift(K;J;h) o (λv.v)) = (λv.v) ∈ (Point(dM(I)) ⟶ Point(dM(K)))
⊢ (dM-lift(K;J;h) x) = x ∈ Point(dM(K))
BY
{ ((ApFunToHypEquands `Z' ⌜Z x⌝ ⌜Point(dM(K))⌝ (-1)⋅ THENA Auto) THEN RepUR ``compose`` -1 THEN Auto) }
Latex:
Latex:
1. I : fset(\mBbbN{})
2. J : \{J:fset(\mBbbN{})| I \msubseteq{} J\}
3. K : \{K:fset(\mBbbN{})| I \msubseteq{} K\}
4. h : K {}\mrightarrow{} J
5. \mforall{}i:names(I). ((h i) = <i>)
6. x : Point(dM(I))
7. dM-lift(K;J;h) o (\mlambda{}v.v) \mmember{} dma-hom(dM(I);dM(K))
8. (dM-lift(K;J;h) o (\mlambda{}v.v)) = (\mlambda{}v.v)
\mvdash{} (dM-lift(K;J;h) x) = x
By
Latex:
((ApFunToHypEquands `Z' \mkleeneopen{}Z x\mkleeneclose{} \mkleeneopen{}Point(dM(K))\mkleeneclose{} (-1)\mcdot{} THENA Auto) THEN RepUR ``compose`` -1 THEN Auto)
Home
Index