Step * 2 of Lemma dM-neg-properties


1. fset(ℕ)
2. ∀[x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq))].
     (dm-neg(names(I);NamesDeq;x ∧ y) = ¬(x) ∨ ¬(y) ∈ Point(free-DeMorgan-lattice(names(I);NamesDeq)))
3. ∀[x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq))].
     (dm-neg(names(I);NamesDeq;x ∨ y) = ¬(x) ∧ ¬(y) ∈ Point(free-DeMorgan-lattice(names(I);NamesDeq)))
4. dm-neg(names(I);NamesDeq;0) 1 ∈ Point(free-DeMorgan-lattice(names(I);NamesDeq))
5. dm-neg(names(I);NamesDeq;1) 0 ∈ Point(free-DeMorgan-lattice(names(I);NamesDeq))
⊢ ∀[x,y:Point(dM(I))].  (dm-neg(names(I);NamesDeq;x ∨ y) = ¬(x) ∧ ¬(y) ∈ Point(dM(I)))
BY
(NthHypSq 3
   THEN RepUR ``dM free-DeMorgan-algebra mk-DeMorgan-algebra lattice-point`` 0
   THEN RepUR ``lattice-meet lattice-join`` 0
   THEN Auto) }


Latex:


Latex:

1.  I  :  fset(\mBbbN{})
2.  \mforall{}[x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq))].
          (dm-neg(names(I);NamesDeq;x  \mwedge{}  y)  =  \mneg{}(x)  \mvee{}  \mneg{}(y))
3.  \mforall{}[x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq))].
          (dm-neg(names(I);NamesDeq;x  \mvee{}  y)  =  \mneg{}(x)  \mwedge{}  \mneg{}(y))
4.  dm-neg(names(I);NamesDeq;0)  =  1
5.  dm-neg(names(I);NamesDeq;1)  =  0
\mvdash{}  \mforall{}[x,y:Point(dM(I))].    (dm-neg(names(I);NamesDeq;x  \mvee{}  y)  =  \mneg{}(x)  \mwedge{}  \mneg{}(y))


By


Latex:
(NthHypSq  3
  THEN  RepUR  ``dM  free-DeMorgan-algebra  mk-DeMorgan-algebra  lattice-point``  0
  THEN  RepUR  ``lattice-meet  lattice-join``  0
  THEN  Auto)




Home Index