Step * 1 of Lemma dM-to-FL-properties


1. ∀[I:fset(ℕ)]. z.dM-to-FL(I;z) ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I)))
2. fset(ℕ)
3. λz.dM-to-FL(I;z) ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))
4. Point(free-DeMorgan-lattice(names(I);NamesDeq))
5. Point(free-DeMorgan-lattice(names(I);NamesDeq))
⊢ dM-to-FL(I;x ∨ y) dM-to-FL(I;x) ∨ dM-to-FL(I;y) ∈ Point(face_lattice(I))
BY
((Subst' dM-to-FL(I;x ∨ y) z.dM-to-FL(I;z)) x ∨ THENA (Reduce THEN Auto))
   THEN (Subst' dM-to-FL(I;x) z.dM-to-FL(I;z)) THENA (Reduce THEN Auto))
   THEN (Subst' dM-to-FL(I;y) z.dM-to-FL(I;z)) THENA (Reduce THEN Auto))) }

1
1. ∀[I:fset(ℕ)]. z.dM-to-FL(I;z) ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I)))
2. fset(ℕ)
3. λz.dM-to-FL(I;z) ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))
4. Point(free-DeMorgan-lattice(names(I);NamesDeq))
5. Point(free-DeMorgan-lattice(names(I);NamesDeq))
⊢ ((λz.dM-to-FL(I;z)) x ∨ y) z.dM-to-FL(I;z)) x ∨ z.dM-to-FL(I;z)) y ∈ Point(face_lattice(I))


Latex:


Latex:

1.  \mforall{}[I:fset(\mBbbN{})].  (\mlambda{}z.dM-to-FL(I;z)  \mmember{}  Hom(free-DeMorgan-lattice(names(I);NamesDeq);face\_lattice(I)))
2.  I  :  fset(\mBbbN{})
3.  \mlambda{}z.dM-to-FL(I;z)  \mmember{}  Hom(free-DeMorgan-lattice(names(I);NamesDeq);face\_lattice(I))
4.  x  :  Point(free-DeMorgan-lattice(names(I);NamesDeq))
5.  y  :  Point(free-DeMorgan-lattice(names(I);NamesDeq))
\mvdash{}  dM-to-FL(I;x  \mvee{}  y)  =  dM-to-FL(I;x)  \mvee{}  dM-to-FL(I;y)


By


Latex:
((Subst'  dM-to-FL(I;x  \mvee{}  y)  \msim{}  (\mlambda{}z.dM-to-FL(I;z))  x  \mvee{}  y  0  THENA  (Reduce  0  THEN  Auto))
  THEN  (Subst'  dM-to-FL(I;x)  \msim{}  (\mlambda{}z.dM-to-FL(I;z))  x  0  THENA  (Reduce  0  THEN  Auto))
  THEN  (Subst'  dM-to-FL(I;y)  \msim{}  (\mlambda{}z.dM-to-FL(I;z))  y  0  THENA  (Reduce  0  THEN  Auto)))




Home Index