Step
*
1
of Lemma
dMpair-eq-meet
1. I : fset(ℕ)
2. i : ℕ
3. j : ℕ
4. i ∈ I
5. j ∈ I
⊢ dMpair(i;j) = <i> ∧ <j> ∈ Point(dM(I))
BY
{ (RepUR ``dMpair lattice-meet dM_inc dM free-DeMorgan-algebra`` 0
THEN RepUR ``mk-DeMorgan-algebra free-DeMorgan-lattice free-dist-lattice`` 0
THEN RepUR ``mk-bounded-distributive-lattice mk-bounded-lattice`` 0
THEN ((RepUR ``lattice-point`` 0 THEN EqTypeCD) THENA Auto)
THEN Try ((Using [`T', ⌜names(I) + names(I)⌝] (BLemma `fset-antichain-singleton`)⋅ THEN Auto))) }
1
1. I : fset(ℕ)
2. i : ℕ
3. j : ℕ
4. i ∈ I
5. j ∈ I
⊢ {{inl i,inl j}}
= fset-ac-glb(union-deq(names(I);names(I);NamesDeq;NamesDeq);<i>;<j>)
∈ fset(fset(names(I) + names(I)))
Latex:
Latex:
1. I : fset(\mBbbN{})
2. i : \mBbbN{}
3. j : \mBbbN{}
4. i \mmember{} I
5. j \mmember{} I
\mvdash{} dMpair(i;j) = <i> \mwedge{} <j>
By
Latex:
(RepUR ``dMpair lattice-meet dM\_inc dM free-DeMorgan-algebra`` 0
THEN RepUR ``mk-DeMorgan-algebra free-DeMorgan-lattice free-dist-lattice`` 0
THEN RepUR ``mk-bounded-distributive-lattice mk-bounded-lattice`` 0
THEN ((RepUR ``lattice-point`` 0 THEN EqTypeCD) THENA Auto)
THEN Try ((Using [`T', \mkleeneopen{}names(I) + names(I)\mkleeneclose{}] (BLemma `fset-antichain-singleton`)\mcdot{} THEN Auto)))
Home
Index