Step
*
of Lemma
decode-universe-term
No Annotations
ā[G:jā¢]. (decode(tš) = cš ā {G ā¢' _})
BY
{ (Intro
THEN Unfolds ``universe-term`` 0
THEN (InstLemma `universe-decode-encode` [āparm{j}ā;āparm{i'}ā;āGā;ācšā;āuniv-comp{i:l}()ā]ā
THENA Auto)
THEN NthHypSq (-1)
THEN RepeatFor 2 (EqCD)) }
1
1. G : CubicalSet{j}
2. decode(encode(cš;univ-comp{i:l}())) = cš ā {G ā¢' _}
ā¢ encode(cš;univ-comp{i:l}()) ~ encode(cš;univ-comp{i:l}())
Latex:
Latex:
No Annotations
\mforall{}[G:j\mvdash{}]. (decode(t\mBbbU{}) = c\mBbbU{})
By
Latex:
(Intro
THEN Unfolds ``universe-term`` 0
THEN (InstLemma `universe-decode-encode` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}c\mBbbU{}\mkleeneclose{};\mkleeneopen{}univ-comp\{i:l\}()\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN NthHypSq (-1)
THEN RepeatFor 2 (EqCD))
Home
Index