Step * 3 of Lemma dm-neg-sq


1. Top
2. Top
3. Top
⊢ λxs.reduce(λx,y. (opposite-lattice(free-DeMorgan-lattice(names(I);NamesDeq))."meet" 
                    y);opposite-lattice(free-DeMorgan-lattice(names(I);NamesDeq))."1";λz.case z
                                                                                      of inl(a) =>
                                                                                      {{inr }}
                                                                                      inr(a) =>
                                                                                      {{inl a}}"(xs))"(v) 
~ λxs.reduce(λx,y. (opposite-lattice(free-DeMorgan-lattice(names(J);NamesDeq))."meet" 
                    y);opposite-lattice(free-DeMorgan-lattice(names(J);NamesDeq))."1";λz.case z
                                                                                      of inl(a) =>
                                                                                      {{inr }}
                                                                                      inr(a) =>
                                                                                      {{inl a}}"(xs))"(v)
BY
RepeatFor ((EqCD THEN Try (Trivial))) }

1
1. Top
2. Top
3. Top
4. xs Base
⊢ λx,y. (opposite-lattice(free-DeMorgan-lattice(names(I);NamesDeq))."meet" y) 
~ λx,y. (opposite-lattice(free-DeMorgan-lattice(names(J);NamesDeq))."meet" y)

2
1. Top
2. Top
3. Top
4. xs Base
⊢ opposite-lattice(free-DeMorgan-lattice(names(I);NamesDeq))."1" 
opposite-lattice(free-DeMorgan-lattice(names(J);NamesDeq))."1"


Latex:


Latex:

1.  I  :  Top
2.  J  :  Top
3.  v  :  Top
\mvdash{}  ..."(v) 
\msim{}  ..."(v)


By


Latex:
RepeatFor  3  ((EqCD  THEN  Try  (Trivial)))




Home Index