Step
*
of Lemma
equiv-discrete-type
No Annotations
∀A,B:Type. ∀f:A ⟶ B.  (Bij(A;B;f) 
⇒ (∀X:j⊢. {X ⊢ _:Equiv(discr(A);discr(B))}))
BY
{ (Auto
   THEN (FLemma `biject-inverse` [-2] THENA Auto)
   THEN ExRepD
   THEN UseWitness ⌜bijection-equiv(X;A;B;f;g)⌝⋅
   THEN Auto) }
Latex:
Latex:
No  Annotations
\mforall{}A,B:Type.  \mforall{}f:A  {}\mrightarrow{}  B.    (Bij(A;B;f)  {}\mRightarrow{}  (\mforall{}X:j\mvdash{}.  \{X  \mvdash{}  \_:Equiv(discr(A);discr(B))\}))
By
Latex:
(Auto
  THEN  (FLemma  `biject-inverse`  [-2]  THENA  Auto)
  THEN  ExRepD
  THEN  UseWitness  \mkleeneopen{}bijection-equiv(X;A;B;f;g)\mkleeneclose{}\mcdot{}
  THEN  Auto)
Home
Index