Nuprl Lemma : equiv-fun-cubical-id-equiv

[G,A:Top].  (equiv-fun(IdEquiv(G;A)) cubical-id-fun(G))


Proof




Definitions occuring in Statement :  cubical-id-equiv: IdEquiv(X;T) equiv-fun: equiv-fun(f) cubical-id-fun: cubical-id-fun(X) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-id-fun: cubical-id-fun(X) cubical-id-equiv: IdEquiv(X;T) equiv-fun: equiv-fun(f) cubical-lam: cubical-lam(X;b) cubical-lambda: b) cubical-id-is-equiv: cubical-id-is-equiv(X;T) equiv-witness: equiv-witness(f;cntr) cubical-fst: p.1 cubical-pair: cubical-pair(u;v) pi1: fst(t) member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut introduction extract_by_obid hypothesis

Latex:
\mforall{}[G,A:Top].    (equiv-fun(IdEquiv(G;A))  \msim{}  cubical-id-fun(G))



Date html generated: 2017_01_10-AM-09_06_37
Last ObjectModification: 2017_01_04-PM-00_24_03

Theory : cubical!type!theory


Home Index