Step
*
2
of Lemma
equiv-path1-0
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. B : {G ⊢ _}
4. f : {G ⊢ _:Equiv(A;B)}
5. equiv-path1(G;A;B;f) = (if (q=0) then (A)p else (B)p) ∈ {G.𝕀, ((q=0) ∨ (q=1)) ⊢ _}
6. (equiv-path1(G;A;B;f))[0(𝕀)] = ((if (q=0) then (A)p else (B)p))[0(𝕀)] ∈ {G ⊢ _}
⊢ (equiv-path1(G;A;B;f))[0(𝕀)] = A ∈ {G ⊢ _}
BY
{ (NthHypEqGen (-1) THEN EqCDA THEN All Thin) }
1
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. B : {G ⊢ _}
⊢ A = ((if (q=0) then (A)p else (B)p))[0(𝕀)] ∈ {G ⊢ _}
Latex:
Latex:
1. G : CubicalSet\{j\}
2. A : \{G \mvdash{} \_\}
3. B : \{G \mvdash{} \_\}
4. f : \{G \mvdash{} \_:Equiv(A;B)\}
5. equiv-path1(G;A;B;f) = (if (q=0) then (A)p else (B)p)
6. (equiv-path1(G;A;B;f))[0(\mBbbI{})] = ((if (q=0) then (A)p else (B)p))[0(\mBbbI{})]
\mvdash{} (equiv-path1(G;A;B;f))[0(\mBbbI{})] = A
By
Latex:
(NthHypEqGen (-1) THEN EqCDA THEN All Thin)
Home
Index