Step * of Lemma equiv_path-0

No Annotations
βˆ€[G:j⊒]. βˆ€[A,B:{G βŠ’ _:cπ•Œ}]. βˆ€[f:{G βŠ’ _:Equiv(decode(A);decode(B))}].  G βŠ’ (equiv_path(G;A;B;f))[0(𝕀)]=A:cπ•Œ
BY
(Introsβ‹…
   THEN Unfold `same-cubical-term` 0
   THEN Unfold `equiv_path` 0
   THEN (InstLemma  `equiv-path2_wf` [⌜G⌝;⌜decode(A)⌝;⌜decode(B)⌝]β‹… THENA Auto)
   THEN (InstHyp [⌜CompFun(A)⌝;⌜CompFun(B)⌝;⌜f⌝(-1)β‹… THENA Auto)
   THEN (GenConclTerm βŒœequiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f)βŒβ‹… THENA Auto)
   THEN RenameVar `C' (-2)
   THEN RepUR ``let`` 0
   THEN (InstLemma `comp-fun-to-comp-op_wf` [⌜G.π•€βŒ;⌜equiv-path1(G;decode(A);decode(B);f)⌝;⌜C⌝]β‹… THENA Auto)
   THEN (InstLemma `csm-universe-encode` [⌜G.π•€βŒ;⌜equiv-path1(G;decode(A);decode(B);f)⌝;
         βŒœcfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f);C)⌝;⌜G⌝;⌜[0(𝕀)]⌝]β‹…
         THENA Auto
         )
   THEN Fold `same-cubical-term` 0
   THEN (HypSubst'  (-1) THENA (Auto THEN SubsumeC βŒœ{G βŠ’_}βŒβ‹… THEN Auto))) }

1
1. CubicalSet{j}
2. {G βŠ’ _:cπ•Œ}
3. {G βŠ’ _:cπ•Œ}
4. {G βŠ’ _:Equiv(decode(A);decode(B))}
5. βˆ€[cA:G +⊒ Compositon(decode(A))]. βˆ€[cB:G +⊒ Compositon(decode(B))]. βˆ€[f:{G βŠ’ _:Equiv(decode(A);decode(B))}].
     (equiv-path2(G;decode(A);decode(B);cA;cB;f) βˆˆ G.𝕀 +⊒ Compositon(equiv-path1(G;decode(A);decode(B);f)))
6. equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f) βˆˆ G.𝕀 +⊒ Compositon(equiv-path1(G;decode(A);decode(B);f))
7. G.𝕀 +⊒ Compositon(equiv-path1(G;decode(A);decode(B);f))
8. equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f)
C
∈ G.𝕀 +⊒ Compositon(equiv-path1(G;decode(A);decode(B);f))
9. cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f);C) βˆˆ G.𝕀 βŠ’ CompOp(equiv-path1(G;decode(A);decode(B);f))
10. (encode(equiv-path1(G;decode(A);decode(B);f);cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f);C)))[0(𝕀)]
encode((equiv-path1(G;decode(A);decode(B);f))[0(𝕀)];(cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f);C))[0(𝕀)])
∈ {G βŠ’ _:cπ•Œ}
⊒ G βŠ’ encode((equiv-path1(G;decode(A);decode(B);f))[0(𝕀)];(cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f)
                                                               ;C))[0(𝕀)])=A:cπ•Œ


Latex:


Latex:
No  Annotations
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].
    G  \mvdash{}  (equiv\_path(G;A;B;f))[0(\mBbbI{})]=A:c\mBbbU{}


By


Latex:
(Intros\mcdot{}
  THEN  Unfold  `same-cubical-term`  0
  THEN  Unfold  `equiv\_path`  0
  THEN  (InstLemma    `equiv-path2\_wf`  [\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}decode(A)\mkleeneclose{};\mkleeneopen{}decode(B)\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  (InstHyp  [\mkleeneopen{}CompFun(A)\mkleeneclose{};\mkleeneopen{}CompFun(B)\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{}]  (-1)\mcdot{}  THENA  Auto)
  THEN  (GenConclTerm  \mkleeneopen{}equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f)\mkleeneclose{}\mcdot{}  THENA  Auto)
  THEN  RenameVar  `C'  (-2)
  THEN  RepUR  ``let``  0
  THEN  (InstLemma  `comp-fun-to-comp-op\_wf`  [\mkleeneopen{}G.\mBbbI{}\mkleeneclose{};\mkleeneopen{}equiv-path1(G;decode(A);decode(B);f)\mkleeneclose{};\mkleeneopen{}C\mkleeneclose{}]\mcdot{}
              THENA  Auto
              )
  THEN  (InstLemma  `csm-universe-encode`  [\mkleeneopen{}G.\mBbbI{}\mkleeneclose{};\mkleeneopen{}equiv-path1(G;decode(A);decode(B);f)\mkleeneclose{};
              \mkleeneopen{}cfun-to-cop(G.\mBbbI{};equiv-path1(G;decode(A);decode(B);f);C)\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}[0(\mBbbI{})]\mkleeneclose{}]\mcdot{}
              THENA  Auto
              )
  THEN  Fold  `same-cubical-term`  0
  THEN  (HypSubst'    (-1)  0  THENA  (Auto  THEN  SubsumeC  \mkleeneopen{}\{G  \mvdash{}'  \_\}\mkleeneclose{}\mcdot{}  THEN  Auto)))




Home Index