Step
*
of Lemma
equiv_path-0
No Annotations
β[G:jβ’]. β[A,B:{G β’ _:cπ}]. β[f:{G β’ _:Equiv(decode(A);decode(B))}]. G β’ (equiv_path(G;A;B;f))[0(π)]=A:cπ
BY
{ (Introsβ
THEN Unfold `same-cubical-term` 0
THEN Unfold `equiv_path` 0
THEN (InstLemma `equiv-path2_wf` [βGβ;βdecode(A)β;βdecode(B)β]β
THENA Auto)
THEN (InstHyp [βCompFun(A)β;βCompFun(B)β;βfβ] (-1)β
THENA Auto)
THEN (GenConclTerm βequiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f)ββ
THENA Auto)
THEN RenameVar `C' (-2)
THEN RepUR ``let`` 0
THEN (InstLemma `comp-fun-to-comp-op_wf` [βG.πβ;βequiv-path1(G;decode(A);decode(B);f)β;βCβ]β
THENA Auto)
THEN (InstLemma `csm-universe-encode` [βG.πβ;βequiv-path1(G;decode(A);decode(B);f)β;
βcfun-to-cop(G.π;equiv-path1(G;decode(A);decode(B);f);C)β;βGβ;β[0(π)]β]β
THENA Auto
)
THEN Fold `same-cubical-term` 0
THEN (HypSubst' (-1) 0 THENA (Auto THEN SubsumeC β{G β’' _}ββ
THEN Auto))) }
1
1. G : CubicalSet{j}
2. A : {G β’ _:cπ}
3. B : {G β’ _:cπ}
4. f : {G β’ _:Equiv(decode(A);decode(B))}
5. β[cA:G +β’ Compositon(decode(A))]. β[cB:G +β’ Compositon(decode(B))]. β[f:{G β’ _:Equiv(decode(A);decode(B))}].
(equiv-path2(G;decode(A);decode(B);cA;cB;f) β G.π +β’ Compositon(equiv-path1(G;decode(A);decode(B);f)))
6. equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f) β G.π +β’ Compositon(equiv-path1(G;decode(A);decode(B);f))
7. C : G.π +β’ Compositon(equiv-path1(G;decode(A);decode(B);f))
8. equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f)
= C
β G.π +β’ Compositon(equiv-path1(G;decode(A);decode(B);f))
9. cfun-to-cop(G.π;equiv-path1(G;decode(A);decode(B);f);C) β G.π β’ CompOp(equiv-path1(G;decode(A);decode(B);f))
10. (encode(equiv-path1(G;decode(A);decode(B);f);cfun-to-cop(G.π;equiv-path1(G;decode(A);decode(B);f);C)))[0(π)]
= encode((equiv-path1(G;decode(A);decode(B);f))[0(π)];(cfun-to-cop(G.π;equiv-path1(G;decode(A);decode(B);f);C))[0(π)])
β {G β’ _:cπ}
β’ G β’ encode((equiv-path1(G;decode(A);decode(B);f))[0(π)];(cfun-to-cop(G.π;equiv-path1(G;decode(A);decode(B);f)
;C))[0(π)])=A:cπ
Latex:
Latex:
No Annotations
\mforall{}[G:j\mvdash{}]. \mforall{}[A,B:\{G \mvdash{} \_:c\mBbbU{}\}]. \mforall{}[f:\{G \mvdash{} \_:Equiv(decode(A);decode(B))\}].
G \mvdash{} (equiv\_path(G;A;B;f))[0(\mBbbI{})]=A:c\mBbbU{}
By
Latex:
(Intros\mcdot{}
THEN Unfold `same-cubical-term` 0
THEN Unfold `equiv\_path` 0
THEN (InstLemma `equiv-path2\_wf` [\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}decode(A)\mkleeneclose{};\mkleeneopen{}decode(B)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstHyp [\mkleeneopen{}CompFun(A)\mkleeneclose{};\mkleeneopen{}CompFun(B)\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN (GenConclTerm \mkleeneopen{}equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f)\mkleeneclose{}\mcdot{} THENA Auto)
THEN RenameVar `C' (-2)
THEN RepUR ``let`` 0
THEN (InstLemma `comp-fun-to-comp-op\_wf` [\mkleeneopen{}G.\mBbbI{}\mkleeneclose{};\mkleeneopen{}equiv-path1(G;decode(A);decode(B);f)\mkleeneclose{};\mkleeneopen{}C\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN (InstLemma `csm-universe-encode` [\mkleeneopen{}G.\mBbbI{}\mkleeneclose{};\mkleeneopen{}equiv-path1(G;decode(A);decode(B);f)\mkleeneclose{};
\mkleeneopen{}cfun-to-cop(G.\mBbbI{};equiv-path1(G;decode(A);decode(B);f);C)\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}[0(\mBbbI{})]\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN Fold `same-cubical-term` 0
THEN (HypSubst' (-1) 0 THENA (Auto THEN SubsumeC \mkleeneopen{}\{G \mvdash{}' \_\}\mkleeneclose{}\mcdot{} THEN Auto)))
Home
Index