Step
*
of Lemma
face_lattice-hom-fixes-sublattice
∀[I,J:fset(ℕ)].
∀[f:Hom(face_lattice(J);face_lattice(I))]. ∀[x:Point(face_lattice(J))].
(f x) = x ∈ Point(face_lattice(I))
supposing ∀i:names(J)
(((f (i=0)) = (i=0) ∈ Point(face_lattice(I))) ∧ ((f (i=1)) = (i=1) ∈ Point(face_lattice(I))))
supposing J ⊆ I
BY
{ (Intros THEN MoveToConcl (-2) THEN BLemma `face_lattice-induction` THEN Auto) }
1
1. I : fset(ℕ)
2. J : fset(ℕ)
3. J ⊆ I
4. f : Hom(face_lattice(J);face_lattice(I))
5. ∀i:names(J). (((f (i=0)) = (i=0) ∈ Point(face_lattice(I))) ∧ ((f (i=1)) = (i=1) ∈ Point(face_lattice(I))))
⊢ (f 0) = 0 ∈ Point(face_lattice(I))
2
1. I : fset(ℕ)
2. J : fset(ℕ)
3. J ⊆ I
4. f : Hom(face_lattice(J);face_lattice(I))
5. ∀i:names(J). (((f (i=0)) = (i=0) ∈ Point(face_lattice(I))) ∧ ((f (i=1)) = (i=1) ∈ Point(face_lattice(I))))
⊢ (f 1) = 1 ∈ Point(face_lattice(I))
3
1. I : fset(ℕ)
2. J : fset(ℕ)
3. J ⊆ I
4. f : Hom(face_lattice(J);face_lattice(I))
5. ∀i:names(J). (((f (i=0)) = (i=0) ∈ Point(face_lattice(I))) ∧ ((f (i=1)) = (i=1) ∈ Point(face_lattice(I))))
6. x : Point(face_lattice(J))
7. y : Point(face_lattice(J))
8. (f x) = x ∈ Point(face_lattice(I))
9. (f y) = y ∈ Point(face_lattice(I))
⊢ (f x ∨ y) = x ∨ y ∈ Point(face_lattice(I))
4
1. I : fset(ℕ)
2. J : fset(ℕ)
3. J ⊆ I
4. f : Hom(face_lattice(J);face_lattice(I))
5. ∀i:names(J). (((f (i=0)) = (i=0) ∈ Point(face_lattice(I))) ∧ ((f (i=1)) = (i=1) ∈ Point(face_lattice(I))))
6. x : Point(face_lattice(J))
7. (f x) = x ∈ Point(face_lattice(I))
8. i : names(J)
⊢ (f (i=0) ∧ x) = (i=0) ∧ x ∈ Point(face_lattice(I))
5
1. I : fset(ℕ)
2. J : fset(ℕ)
3. J ⊆ I
4. f : Hom(face_lattice(J);face_lattice(I))
5. ∀i:names(J). (((f (i=0)) = (i=0) ∈ Point(face_lattice(I))) ∧ ((f (i=1)) = (i=1) ∈ Point(face_lattice(I))))
6. x : Point(face_lattice(J))
7. (f x) = x ∈ Point(face_lattice(I))
8. i : names(J)
9. (f (i=0) ∧ x) = (i=0) ∧ x ∈ Point(face_lattice(I))
⊢ (f (i=1) ∧ x) = (i=1) ∧ x ∈ Point(face_lattice(I))
Latex:
Latex:
\mforall{}[I,J:fset(\mBbbN{})].
\mforall{}[f:Hom(face\_lattice(J);face\_lattice(I))]. \mforall{}[x:Point(face\_lattice(J))].
(f x) = x supposing \mforall{}i:names(J). (((f (i=0)) = (i=0)) \mwedge{} ((f (i=1)) = (i=1)))
supposing J \msubseteq{} I
By
Latex:
(Intros THEN MoveToConcl (-2) THEN BLemma `face\_lattice-induction` THEN Auto)
Home
Index