Nuprl Lemma : fiber-comp-subset

[X,T,A,w,a,cT,cA,phi:Top].  (fiber-comp(X, phi;T;A;w;a;cT;cA) fiber-comp(X;T;A;w;a;cT;cA))


Proof




Definitions occuring in Statement :  fiber-comp: fiber-comp(X;T;A;w;a;cT;cA) context-subset: Gamma, phi uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] fiber-comp: fiber-comp(X;T;A;w;a;cT;cA) sigma_comp: sigma_comp(cA;cB) csm-comp-structure: (cA)tau csm-comp: F compose: g path_comp: path_comp cc-snd: q cc-fst: p csm-ap-term: (t)s csm+: tau+ csm-id-adjoin: [u] csm-ap-type: (AF)s csm-ap: (s)x csm-adjoin: (s;u) csm-id: 1(X) pi1: fst(t) pi2: snd(t) member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule because_Cache cut introduction extract_by_obid hypothesis

Latex:
\mforall{}[X,T,A,w,a,cT,cA,phi:Top].    (fiber-comp(X,  phi;T;A;w;a;cT;cA)  \msim{}  fiber-comp(X;T;A;w;a;cT;cA))



Date html generated: 2017_01_10-AM-10_09_50
Last ObjectModification: 2017_01_03-PM-04_56_17

Theory : cubical!type!theory


Home Index