Step
*
1
of Lemma
fill-type-up-1
1. Gamma : CubicalSet{j}
2. A : {Gamma.𝕀 ⊢ _}
3. cA : Gamma.𝕀 ⊢ CompOp(A)
4. Gamma.𝕀 ⊢ ((A)[0(𝕀)])p
5. u : {Gamma ⊢ _:(A)[0(𝕀)]}
⊢ (app(fill-type-up(Gamma;A;cA); (u)p))[1(𝕀)] = app(transport-fun(Gamma;A;cA); u) ∈ {Gamma ⊢ _:(A)[1(𝕀)]}
BY
{ ((Assert (app(fill-type-up(Gamma;A;cA); (u)p))[1(𝕀)] ∈ {Gamma ⊢ _:(A)[1(𝕀)]} BY
((GenConclTerm ⌜fill-type-up(Gamma;A;cA)⌝⋅ THENA Auto)
THEN GenConcl ⌜app(v; (u)p) = w ∈ {Gamma.𝕀 ⊢ _:A}⌝⋅
THEN Auto))
THEN (CubicalTermEqual THENA Auto)
) }
1
1. Gamma : CubicalSet{j}
2. A : {Gamma.𝕀 ⊢ _}
3. cA : Gamma.𝕀 ⊢ CompOp(A)
4. Gamma.𝕀 ⊢ ((A)[0(𝕀)])p
5. u : {Gamma ⊢ _:(A)[0(𝕀)]}
6. (app(fill-type-up(Gamma;A;cA); (u)p))[1(𝕀)] ∈ {Gamma ⊢ _:(A)[1(𝕀)]}
7. I : fset(ℕ)
8. a : Gamma(I)
⊢ ((app(fill-type-up(Gamma;A;cA); (u)p))[1(𝕀)] I a) = (app(transport-fun(Gamma;A;cA); u) I a) ∈ (A)[1(𝕀)](a)
Latex:
Latex:
1. Gamma : CubicalSet\{j\}
2. A : \{Gamma.\mBbbI{} \mvdash{} \_\}
3. cA : Gamma.\mBbbI{} \mvdash{} CompOp(A)
4. Gamma.\mBbbI{} \mvdash{} ((A)[0(\mBbbI{})])p
5. u : \{Gamma \mvdash{} \_:(A)[0(\mBbbI{})]\}
\mvdash{} (app(fill-type-up(Gamma;A;cA); (u)p))[1(\mBbbI{})] = app(transport-fun(Gamma;A;cA); u)
By
Latex:
((Assert (app(fill-type-up(Gamma;A;cA); (u)p))[1(\mBbbI{})] \mmember{} \{Gamma \mvdash{} \_:(A)[1(\mBbbI{})]\} BY
((GenConclTerm \mkleeneopen{}fill-type-up(Gamma;A;cA)\mkleeneclose{}\mcdot{} THENA Auto)
THEN GenConcl \mkleeneopen{}app(v; (u)p) = w\mkleeneclose{}\mcdot{}
THEN Auto))
THEN (CubicalTermEqual THENA Auto)
)
Home
Index