Step
*
1
of Lemma
formal-cube-singleton1
1. x : ℕ
2. 𝕀 ∈ Functor(op-cat(CubeCat);TypeCat')
3. A : fset(ℕ)
4. B : fset(ℕ)
5. g : names(A) ⟶ Point(dM(B))
6. f : names({x}) ⟶ Point(dM(A))
⊢ (dM-lift(B;A;g) (f x)) = (f ⋅ g x) ∈ Point(dM(B))
BY
{ ((Subst' f ⋅ g x ~ dM-lift(B;A;g) (f x) 0 THENA (RepUR ``nh-comp dM-lift dma-lift-compose`` 0 THEN Fold `dM` 0))
THEN Auto
) }
Latex:
Latex:
1. x : \mBbbN{}
2. \mBbbI{} \mmember{} Functor(op-cat(CubeCat);TypeCat')
3. A : fset(\mBbbN{})
4. B : fset(\mBbbN{})
5. g : names(A) {}\mrightarrow{} Point(dM(B))
6. f : names(\{x\}) {}\mrightarrow{} Point(dM(A))
\mvdash{} (dM-lift(B;A;g) (f x)) = (f \mcdot{} g x)
By
Latex:
((Subst' f \mcdot{} g x \msim{} dM-lift(B;A;g) (f x) 0
THENA (RepUR ``nh-comp dM-lift dma-lift-compose`` 0 THEN Fold `dM` 0)
)
THEN Auto
)
Home
Index