Step
*
of Lemma
formal-cube-singleton2
∀x:ℕ. (λA,u,x. u ∈ nat-trans(op-cat(CubeCat);TypeCat';𝕀;formal-cube({x})))
BY
{ (Intro
THEN (Assert 𝕀 ∈ Functor(op-cat(CubeCat);TypeCat') BY
((Fold `ps_context` 0 THEN Fold `cubical_set` 0) THEN Auto))
THEN (BLemma `is-nat-trans` THENW Auto)
THEN RepUR ``op-cat cube-cat type-cat interval-presheaf formal-cube`` 0
THEN RepUR ``compose names-hom`` 0
THEN Auto
THEN (FunExt THENW Auto)
THEN Reduce 0
THEN RenameVar `u' (-1)) }
1
1. x : ℕ
2. 𝕀 ∈ Functor(op-cat(CubeCat);TypeCat')
3. A : fset(ℕ)
4. B : fset(ℕ)
5. g : names(A) ⟶ Point(dM(B))
6. u : Point(dM(A))
⊢ λx@0.u ⋅ g = (λx@0.(dM-lift(B;A;g) u)) ∈ (names({x}) ⟶ Point(dM(B)))
Latex:
Latex:
\mforall{}x:\mBbbN{}. (\mlambda{}A,u,x. u \mmember{} nat-trans(op-cat(CubeCat);TypeCat';\mBbbI{};formal-cube(\{x\})))
By
Latex:
(Intro
THEN (Assert \mBbbI{} \mmember{} Functor(op-cat(CubeCat);TypeCat') BY
((Fold `ps\_context` 0 THEN Fold `cubical\_set` 0) THEN Auto))
THEN (BLemma `is-nat-trans` THENW Auto)
THEN RepUR ``op-cat cube-cat type-cat interval-presheaf formal-cube`` 0
THEN RepUR ``compose names-hom`` 0
THEN Auto
THEN (FunExt THENW Auto)
THEN Reduce 0
THEN RenameVar `u' (-1))
Home
Index