Step
*
1
of Lemma
implies-face-forall-holds
1. H : CubicalSet{j}
2. phi : {H.𝕀 ⊢ _:𝔽}
3. H.𝕀 ⊢ (1(𝔽)
⇒ phi)
4. I : fset(ℕ)
5. rho : H(I)
6. 1(𝔽)(rho) = 1 ∈ Point(face_lattice(I))
⊢ (∀new-name(I).phi((s(rho);<new-name(I)>))) = 1 ∈ Point(face_lattice(I))
BY
{ ((D 3 With ⌜I+new-name(I)⌝ THENA Auto) THEN (D -1 With ⌜(s(rho);<new-name(I)>)⌝ THENA Auto)) }
1
1. H : CubicalSet{j}
2. phi : {H.𝕀 ⊢ _:𝔽}
3. I : fset(ℕ)
4. rho : H(I)
5. 1(𝔽)(rho) = 1 ∈ Point(face_lattice(I))
⊢ <new-name(I)> ∈ 𝕀(s(rho))
2
1. H : CubicalSet{j}
2. phi : {H.𝕀 ⊢ _:𝔽}
3. I : fset(ℕ)
4. rho : H(I)
5. 1(𝔽)(rho) = 1 ∈ Point(face_lattice(I))
6. (1(𝔽)((s(rho);<new-name(I)>)) = 1 ∈ Point(face_lattice(I+new-name(I))))
⇒ (phi((s(rho);<new-name(I)>)) = 1 ∈ Point(face_lattice(I+new-name(I))))
⊢ (∀new-name(I).phi((s(rho);<new-name(I)>))) = 1 ∈ Point(face_lattice(I))
Latex:
Latex:
1. H : CubicalSet\{j\}
2. phi : \{H.\mBbbI{} \mvdash{} \_:\mBbbF{}\}
3. H.\mBbbI{} \mvdash{} (1(\mBbbF{}) {}\mRightarrow{} phi)
4. I : fset(\mBbbN{})
5. rho : H(I)
6. 1(\mBbbF{})(rho) = 1
\mvdash{} (\mforall{}new-name(I).phi((s(rho);<new-name(I)>))) = 1
By
Latex:
((D 3 With \mkleeneopen{}I+new-name(I)\mkleeneclose{} THENA Auto) THEN (D -1 With \mkleeneopen{}(s(rho);<new-name(I)>)\mkleeneclose{} THENA Auto))
Home
Index