Step
*
of Lemma
neg-bool-trans_wf
neg-bool-trans() ∈ {() ⊢ _:(discr(𝔹) ⟶ discr(𝔹))}
BY
{ ((Assert neg-bool-trans() ∈ {() ⊢ _:(decode(Bool) ⟶ decode(Bool))} BY
          ProveWfLemma)
   THEN InferEqualType
   THEN Auto
   THEN EqCDA
   THEN Auto) }
1
.....subterm..... T:t
2:n
1. neg-bool-trans() ∈ {() ⊢ _:(decode(Bool) ⟶ decode(Bool))}
⊢ decode(Bool) = discr(𝔹) ∈ {() ⊢ _}
Latex:
Latex:
neg-bool-trans()  \mmember{}  \{()  \mvdash{}  \_:(discr(\mBbbB{})  {}\mrightarrow{}  discr(\mBbbB{}))\}
By
Latex:
((Assert  neg-bool-trans()  \mmember{}  \{()  \mvdash{}  \_:(decode(Bool)  {}\mrightarrow{}  decode(Bool))\}  BY
                ProveWfLemma)
  THEN  InferEqualType
  THEN  Auto
  THEN  EqCDA
  THEN  Auto)
Home
Index