Step * 1 of Lemma one-dimensional-dM


1. : ℕ
2. Point(dM({i}))
3. Point(dM({i})) ⊆fset(fset(names({i}) names({i})))
4. ∀x,y:Point(dM({i})).  (x y ∈ Point(dM({i})) ⇐⇒ y ∈ fset(fset(names({i}) names({i}))))
⊢ (v 0 ∈ Point(dM({i})))
∨ (v 1 ∈ Point(dM({i})))
∨ (v = <i> ∈ Point(dM({i})))
∨ (v = <1-i> ∈ Point(dM({i})))
∨ (v = <i> ∧ <1-i> ∈ Point(dM({i})))
∨ (v = <i> ∨ <1-i> ∈ Point(dM({i})))
BY
((Assert dM({i}) ∈ LatticeStructure BY
          Auto)
   THEN (Assert <i> ∈ Point(dM({i})) BY
               Auto)
   THEN (Assert <1-i> ∈ Point(dM({i})) BY
               Auto)) }

1
1. : ℕ
2. Point(dM({i}))
3. Point(dM({i})) ⊆fset(fset(names({i}) names({i})))
4. ∀x,y:Point(dM({i})).  (x y ∈ Point(dM({i})) ⇐⇒ y ∈ fset(fset(names({i}) names({i}))))
5. dM({i}) ∈ LatticeStructure
6. <i> ∈ Point(dM({i}))
7. <1-i> ∈ Point(dM({i}))
⊢ (v 0 ∈ Point(dM({i})))
∨ (v 1 ∈ Point(dM({i})))
∨ (v = <i> ∈ Point(dM({i})))
∨ (v = <1-i> ∈ Point(dM({i})))
∨ (v = <i> ∧ <1-i> ∈ Point(dM({i})))
∨ (v = <i> ∨ <1-i> ∈ Point(dM({i})))


Latex:


Latex:

1.  i  :  \mBbbN{}
2.  v  :  Point(dM(\{i\}))
3.  Point(dM(\{i\}))  \msubseteq{}r  fset(fset(names(\{i\})  +  names(\{i\})))
4.  \mforall{}x,y:Point(dM(\{i\})).    (x  =  y  \mLeftarrow{}{}\mRightarrow{}  x  =  y)
\mvdash{}  (v  =  0)  \mvee{}  (v  =  1)  \mvee{}  (v  =  <i>)  \mvee{}  (v  =  ə-i>)  \mvee{}  (v  =  <i>  \mwedge{}  ə-i>)  \mvee{}  (v  =  <i>  \mvee{}  ə-i>)


By


Latex:
((Assert  dM(\{i\})  \mmember{}  LatticeStructure  BY
                Auto)
  THEN  (Assert  <i>  \mmember{}  Point(dM(\{i\}))  BY
                          Auto)
  THEN  (Assert  ə-i>  \mmember{}  Point(dM(\{i\}))  BY
                          Auto))




Home Index