Step
*
1
of Lemma
one-dimensional-dM
1. i : ℕ
2. v : Point(dM({i}))
3. Point(dM({i})) ⊆r fset(fset(names({i}) + names({i})))
4. ∀x,y:Point(dM({i})). (x = y ∈ Point(dM({i}))
⇐⇒ x = y ∈ fset(fset(names({i}) + names({i}))))
⊢ (v = 0 ∈ Point(dM({i})))
∨ (v = 1 ∈ Point(dM({i})))
∨ (v = <i> ∈ Point(dM({i})))
∨ (v = <1-i> ∈ Point(dM({i})))
∨ (v = <i> ∧ <1-i> ∈ Point(dM({i})))
∨ (v = <i> ∨ <1-i> ∈ Point(dM({i})))
BY
{ ((Assert dM({i}) ∈ LatticeStructure BY
Auto)
THEN (Assert <i> ∈ Point(dM({i})) BY
Auto)
THEN (Assert <1-i> ∈ Point(dM({i})) BY
Auto)) }
1
1. i : ℕ
2. v : Point(dM({i}))
3. Point(dM({i})) ⊆r fset(fset(names({i}) + names({i})))
4. ∀x,y:Point(dM({i})). (x = y ∈ Point(dM({i}))
⇐⇒ x = y ∈ fset(fset(names({i}) + names({i}))))
5. dM({i}) ∈ LatticeStructure
6. <i> ∈ Point(dM({i}))
7. <1-i> ∈ Point(dM({i}))
⊢ (v = 0 ∈ Point(dM({i})))
∨ (v = 1 ∈ Point(dM({i})))
∨ (v = <i> ∈ Point(dM({i})))
∨ (v = <1-i> ∈ Point(dM({i})))
∨ (v = <i> ∧ <1-i> ∈ Point(dM({i})))
∨ (v = <i> ∨ <1-i> ∈ Point(dM({i})))
Latex:
Latex:
1. i : \mBbbN{}
2. v : Point(dM(\{i\}))
3. Point(dM(\{i\})) \msubseteq{}r fset(fset(names(\{i\}) + names(\{i\})))
4. \mforall{}x,y:Point(dM(\{i\})). (x = y \mLeftarrow{}{}\mRightarrow{} x = y)
\mvdash{} (v = 0) \mvee{} (v = 1) \mvee{} (v = <i>) \mvee{} (v = ə-i>) \mvee{} (v = <i> \mwedge{} ə-i>) \mvee{} (v = <i> \mvee{} ə-i>)
By
Latex:
((Assert dM(\{i\}) \mmember{} LatticeStructure BY
Auto)
THEN (Assert <i> \mmember{} Point(dM(\{i\})) BY
Auto)
THEN (Assert ə-i> \mmember{} Point(dM(\{i\})) BY
Auto))
Home
Index