Step * 2 of Lemma path-contraction_wf


1. CubicalSet{j}
2. {X ⊢ _}
3. {X ⊢ _:A}
4. {X ⊢ _:A}
5. pth {X ⊢ _:(Path_A b)}
6. ((pth)p)p (q)p ∧ q ∈ {X.𝕀.𝕀 ⊢ _:((A)p)p}
⊢ <>(((pth)p)p (q)p ∧ q) ∈ {X.𝕀 ⊢ _:(Path_(A)p (a)p path-point(pth))}
BY
((InstLemma `term-to-path_wf` [⌜X.𝕀⌝;⌜(A)p⌝;⌜((pth)p)p (q)p ∧ q⌝]⋅ THENA Auto)
   THEN (RWO  "csm-cubical-path-app" (-1) THENA Auto)
   THEN Reduce -1
   THEN (Subst' ((pth)p)1(X.𝕀(pth)p -1 THENA (CsmUnfolding THEN Auto))) }

1
1. CubicalSet{j}
2. {X ⊢ _}
3. {X ⊢ _:A}
4. {X ⊢ _:A}
5. pth {X ⊢ _:(Path_A b)}
6. ((pth)p)p (q)p ∧ q ∈ {X.𝕀.𝕀 ⊢ _:((A)p)p}
7. <>(((pth)p)p (q)p ∧ q) ∈ {X.𝕀 ⊢ _:(Path_(A)p (pth)p ((q)p ∧ q)[0(𝕀)] (pth)p ((q)p ∧ q)[1(𝕀)])}
⊢ <>(((pth)p)p (q)p ∧ q) ∈ {X.𝕀 ⊢ _:(Path_(A)p (a)p path-point(pth))}


Latex:


Latex:

1.  X  :  CubicalSet\{j\}
2.  A  :  \{X  \mvdash{}  \_\}
3.  a  :  \{X  \mvdash{}  \_:A\}
4.  b  :  \{X  \mvdash{}  \_:A\}
5.  pth  :  \{X  \mvdash{}  \_:(Path\_A  a  b)\}
6.  ((pth)p)p  @  (q)p  \mwedge{}  q  \mmember{}  \{X.\mBbbI{}.\mBbbI{}  \mvdash{}  \_:((A)p)p\}
\mvdash{}  <>(((pth)p)p  @  (q)p  \mwedge{}  q)  \mmember{}  \{X.\mBbbI{}  \mvdash{}  \_:(Path\_(A)p  (a)p  path-point(pth))\}


By


Latex:
((InstLemma  `term-to-path\_wf`  [\mkleeneopen{}X.\mBbbI{}\mkleeneclose{};\mkleeneopen{}(A)p\mkleeneclose{};\mkleeneopen{}((pth)p)p  @  (q)p  \mwedge{}  q\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  (RWO    "csm-cubical-path-app"  (-1)  THENA  Auto)
  THEN  Reduce  -1
  THEN  (Subst'  ((pth)p)1(X.\mBbbI{})  \msim{}  (pth)p  -1  THENA  (CsmUnfolding  THEN  Auto)))




Home Index