Step
*
of Lemma
path-type-at
∀[X,A,a,b,I,alpha:Top].
((Path_A a b)(alpha) ~ {p:{w:J:fset(ℕ) ⟶ f:J ⟶ I ⟶ u:Point(dM(J)) ⟶ A(f(alpha))|
∀J,K:fset(ℕ). ∀f:J ⟶ I. ∀g:K ⟶ J. ∀u:Point(dM(J)).
((w J f u f(alpha) g) = (w K f ⋅ g (u f(alpha) g)) ∈ A(g(f(alpha))))} |
((p I 1 0) = a(alpha) ∈ A(alpha)) ∧ ((p I 1 1) = b(alpha) ∈ A(alpha))} )
BY
{ ((UnivCD THENA Auto)
THEN RepUR ``path-type pathtype cubical-subset cubical-fun`` 0
THEN RepUR ``cubical-fun-family`` 0
THEN (RWO "interval-type-at" 0 THENA Auto)
THEN RepUR ``interval-presheaf`` 0
THEN Auto) }
Latex:
Latex:
\mforall{}[X,A,a,b,I,alpha:Top].
((Path\_A a b)(alpha) \msim{} \{p:\{w:J:fset(\mBbbN{}) {}\mrightarrow{} f:J {}\mrightarrow{} I {}\mrightarrow{} u:Point(dM(J)) {}\mrightarrow{} A(f(alpha))|
\mforall{}J,K:fset(\mBbbN{}). \mforall{}f:J {}\mrightarrow{} I. \mforall{}g:K {}\mrightarrow{} J. \mforall{}u:Point(dM(J)).
((w J f u f(alpha) g) = (w K f \mcdot{} g (u f(alpha) g)))\} |
((p I 1 0) = a(alpha)) \mwedge{} ((p I 1 1) = b(alpha))\} )
By
Latex:
((UnivCD THENA Auto)
THEN RepUR ``path-type pathtype cubical-subset cubical-fun`` 0
THEN RepUR ``cubical-fun-family`` 0
THEN (RWO "interval-type-at" 0 THENA Auto)
THEN RepUR ``interval-presheaf`` 0
THEN Auto)
Home
Index