Step * of Lemma pres-a0-constraint

No Annotations
[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)].
  ((pres-a0(G;f;t0))p ∈ {G.𝕀 ⊢ _:((A)p+)[0(𝕀)][((phi)p ∨ (q=1)) |⟶ ((presw(G;phi;f;t;t0;cT))p+)[0(𝕀)]]})
BY
(Intros
   THEN Unhide
   THEN (InstLemma `csm+_wf` [⌜G⌝;⌜G.𝕀⌝;⌜𝕀⌝;⌜p⌝]⋅ THENA Auto)
   THEN (RWO "csm-interval-type" (-1) THENA Auto)
   THEN (Assert ⌜app(f; t) ∈ {G.𝕀(phi)p ⊢ _:A}⌝⋅
         THENA ((Assert ⌜f ∈ {G.𝕀(phi)p ⊢ _:(T ⟶ A)}⌝⋅ THENA Auto)
                THEN CubicalAppFun⋅
                THEN RWW "cubical-fun-subset" 0
                THEN Auto)
         )
   THEN (Assert {G.𝕀.𝕀 ⊢ _:(A)p+} ⊆{G.𝕀((phi)p ∨ (q=1)).𝕀 ⊢ _:(A)p+} BY
               (BLemma `subset-cubical-term` THEN EAuto 2))
   THEN (Assert ⌜{G.𝕀 ⊢ _:((A)p+)[1(𝕀)][((phi)p ∨ (q=1)) |⟶ ((presw(G;phi;f;t;t0;cT))p+)[1(𝕀)]]} ∈ 𝕌{[i' j']}⌝⋅
         THENA ((Enough to prove ((presw(G;phi;f;t;t0;cT))p+)[1(𝕀)] ∈ {G.𝕀((phi)p ∨ (q=1)) ⊢ _:((A)p+)[1(𝕀)]}
                  Because Auto)
                THEN SubsumeC ⌜{G.𝕀 ⊢ _:((A)p+)[1(𝕀)]}⌝⋅
                THEN Auto)
         )
   THEN (Assert (presw(G;phi;f;t;t0;cT))p+ ∈ {G.𝕀((phi)p ∨ (q=1)).𝕀 ⊢ _:(A)p+} BY
               (DoSubsume THEN Auto))) }

1
1. CubicalSet{j}
2. phi {G ⊢ _:𝔽}
3. {G.𝕀 ⊢ _}
4. {G.𝕀 ⊢ _}
5. {G.𝕀 ⊢ _:(T ⟶ A)}
6. {G.𝕀(phi)p ⊢ _:T}
7. t0 {G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}
8. cT G.𝕀 +⊢ Compositon(T)
9. p+ ∈ G.𝕀.𝕀 ij⟶ G.𝕀
10. app(f; t) ∈ {G.𝕀(phi)p ⊢ _:A}
11. {G.𝕀.𝕀 ⊢ _:(A)p+} ⊆{G.𝕀((phi)p ∨ (q=1)).𝕀 ⊢ _:(A)p+}
12. {G.𝕀 ⊢ _:((A)p+)[1(𝕀)][((phi)p ∨ (q=1)) |⟶ ((presw(G;phi;f;t;t0;cT))p+)[1(𝕀)]]} ∈ 𝕌{[i' j']}
13. (presw(G;phi;f;t;t0;cT))p+ ∈ {G.𝕀((phi)p ∨ (q=1)).𝕀 ⊢ _:(A)p+}
⊢ (pres-a0(G;f;t0))p ∈ {G.𝕀 ⊢ _:((A)p+)[0(𝕀)][((phi)p ∨ (q=1)) |⟶ ((presw(G;phi;f;t;t0;cT))p+)[0(𝕀)]]}


Latex:


Latex:
No  Annotations
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].
    ((pres-a0(G;f;t0))p  \mmember{}  \{G.\mBbbI{}  \mvdash{}  \_:((A)p+)[0(\mBbbI{})][((phi)p  \mvee{}  (q=1)) 
                                                                  |{}\mrightarrow{}  ((presw(G;phi;f;t;t0;cT))p+)[0(\mBbbI{})]]\})


By


Latex:
(Intros
  THEN  Unhide
  THEN  (InstLemma  `csm+\_wf`  [\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}G.\mBbbI{}\mkleeneclose{};\mkleeneopen{}\mBbbI{}\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  (RWO  "csm-interval-type"  (-1)  THENA  Auto)
  THEN  (Assert  \mkleeneopen{}app(f;  t)  \mmember{}  \{G.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}\mkleeneclose{}\mcdot{}
              THENA  ((Assert  \mkleeneopen{}f  \mmember{}  \{G.\mBbbI{},  (phi)p  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}\mkleeneclose{}\mcdot{}  THENA  Auto)
                            THEN  CubicalAppFun\mcdot{}
                            THEN  RWW  "cubical-fun-subset"  0
                            THEN  Auto)
              )
  THEN  (Assert  \{G.\mBbbI{}.\mBbbI{}  \mvdash{}  \_:(A)p+\}  \msubseteq{}r  \{G.\mBbbI{},  ((phi)p  \mvee{}  (q=1)).\mBbbI{}  \mvdash{}  \_:(A)p+\}  BY
                          (BLemma  `subset-cubical-term`  THEN  EAuto  2))
  THEN  (Assert  \mkleeneopen{}\{G.\mBbbI{}  \mvdash{}  \_:((A)p+)[1(\mBbbI{})][((phi)p  \mvee{}  (q=1))  |{}\mrightarrow{}  ((presw(G;phi;f;t;t0;cT))p+)[1(\mBbbI{})]]\}
                              \mmember{}  \mBbbU{}\{[i'  |  j']\}\mkleeneclose{}\mcdot{}
              THENA  ((Enough  to  prove  ((presw(G;phi;f;t;t0;cT))p+)[1(\mBbbI{})]
                                                              \mmember{}  \{G.\mBbbI{},  ((phi)p  \mvee{}  (q=1))  \mvdash{}  \_:((A)p+)[1(\mBbbI{})]\}
                                Because  Auto)
                            THEN  SubsumeC  \mkleeneopen{}\{G.\mBbbI{}  \mvdash{}  \_:((A)p+)[1(\mBbbI{})]\}\mkleeneclose{}\mcdot{}
                            THEN  Auto)
              )
  THEN  (Assert  (presw(G;phi;f;t;t0;cT))p+  \mmember{}  \{G.\mBbbI{},  ((phi)p  \mvee{}  (q=1)).\mBbbI{}  \mvdash{}  \_:(A)p+\}  BY
                          (DoSubsume  THEN  Auto)))




Home Index