Nuprl Lemma : q-csm+

[H,K,A,tau:Top].  ((q)tau+ q)


Proof




Definitions occuring in Statement :  csm+: tau+ cc-snd: q csm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  csm-ap-term: (t)s pscm-ap-term: (t)s cc-snd: q psc-snd: q csm-ap: (s)x pscm-ap: (s)x csm+: tau+ pscm+: tau+ csm-adjoin: (s;u) pscm-adjoin: (s;u) csm-comp: F pscm-comp: F cc-fst: p psc-fst: p
Lemmas referenced :  q-pscm+
Rules used in proof :  cut introduction extract_by_obid sqequalRule sqequalReflexivity sqequalSubstitution sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[H,K,A,tau:Top].    ((q)tau+  \msim{}  q)



Date html generated: 2018_05_23-AM-08_53_09
Last ObjectModification: 2018_05_20-PM-06_02_05

Theory : cubical!type!theory


Home Index