Step
*
2
of Lemma
r-comp-nc-0
1. I : fset(ℕ)
2. i : ℕ
3. ¬i ∈ I
4. x : names(I+i)
5. x ≠ i
⊢ (dM-lift(I;I+i;λx.if (x =z i) then 0 else <x> fi ) <x>) = <x> ∈ Point(dM(I))
BY
{ ((FLemma `not-added-name` [-1] THENA Auto)
THEN (Assert ⌜λx.if (x =z i) then 0 else <x> fi ∈ I ⟶ I+i⌝⋅ THENM ((RWO "dM-lift-inc" 0 THENA Auto) THEN Reduce 0))
) }
1
.....assertion.....
1. I : fset(ℕ)
2. i : ℕ
3. ¬i ∈ I
4. x : names(I+i)
5. x ≠ i
6. x ∈ names(I)
⊢ λx.if (x =z i) then 0 else <x> fi ∈ I ⟶ I+i
2
1. I : fset(ℕ)
2. i : ℕ
3. ¬i ∈ I
4. x : names(I+i)
5. x ≠ i
6. x ∈ names(I)
7. λx.if (x =z i) then 0 else <x> fi ∈ I ⟶ I+i
⊢ if (x =z i) then 0 else <x> fi = <x> ∈ Point(dM(I))
Latex:
Latex:
1. I : fset(\mBbbN{})
2. i : \mBbbN{}
3. \mneg{}i \mmember{} I
4. x : names(I+i)
5. x \mneq{} i
\mvdash{} (dM-lift(I;I+i;\mlambda{}x.if (x =\msubz{} i) then 0 else <x> fi ) <x>) = <x>
By
Latex:
((FLemma `not-added-name` [-1] THENA Auto)
THEN (Assert \mkleeneopen{}\mlambda{}x.if (x =\msubz{} i) then 0 else <x> fi \mmember{} I {}\mrightarrow{} I+i\mkleeneclose{}\mcdot{}
THENM ((RWO "dM-lift-inc" 0 THENA Auto) THEN Reduce 0)
)
)
Home
Index