Nuprl Lemma : sigma-unelim-p-term
∀[t:Top]. (((t)p)SigmaUnElim ~ ((t)p)p)
Proof
Definitions occuring in Statement : 
sigma-unelim-csm: SigmaUnElim
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
csm-ap-term: (t)s
, 
pscm-ap-term: (t)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
cc-fst: p
, 
psc-fst: p
, 
sigma-unelim-csm: SigmaUnElim
, 
sigma-unelim-pscm: SigmaUnElim
, 
cc-adjoin-cube: (v;u)
, 
psc-adjoin-set: (v;u)
Lemmas referenced : 
ps-sigma-unelim-p-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalReflexivity, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[t:Top].  (((t)p)SigmaUnElim  \msim{}  ((t)p)p)
Date html generated:
2018_05_23-AM-09_10_20
Last ObjectModification:
2018_05_20-PM-06_09_53
Theory : cubical!type!theory
Home
Index