Step
*
of Lemma
transEquiv_wf
No Annotations
β[G:jβ’]. β[A,B:{G β’ _:cπ}]. β[p:{G β’ _:(Path_cπ A B)}]. (transEquiv{i:l}(G;A;p) β {G β’ _:Equiv(decode(A);decode(B))})
BY
{ ((Introsβ
THEN (InstLemma `cc-snd_wf` [βparm{j}β;βparm{i'}β;βGβ;βcπβ]β
THENA Auto)
THEN (RWO "csm-cubical-universe" (-1) THENA Auto)
THEN (InstLemma `csm-ap-term-universe` [βparm{[i' | j]}β; βparm{i}β;βGβ;βG.cπβ;βpβ;βAβ]β
THENA Auto)
THEN (Assert equivTerm(G.cπ;(A)p;q) β {G.cπ β’ _:(cπ)p} BY
(RWO "csm-cubical-universe" 0 THEN Auto))
THEN (Assert cubical-lam(G;equivTerm(G.cπ;(A)p;q)) β {G β’ _:(cπ βΆ cπ)} BY
(InstLemma `cubical-lam_wf` [βparm{j}β;βparm{i'}β]β
THEN BHyp -1 THEN Auto)))
THEN (InstLemma `cubical-subst_wf` [βGβ;βcπβ;βAβ;βBβ;βpβ;βcubical-lam(G;equivTerm(G.cπ;(A)p;q))β]β
THENA Auto)
THEN Assert ββB:{G β’ _:cπ}
(decode(app(cubical-lam(G;equivTerm(G.cπ;(A)p;q)); B)) = Equiv(decode(A);decode(B)) β {G β’ _})ββ
) }
1
.....assertion.....
1. [G] : CubicalSet{j}
2. [A] : {G β’ _:cπ}
3. [B] : {G β’ _:cπ}
4. [p] : {G β’ _:(Path_cπ A B)}
5. q β {G.cπ β’ _:cπ}
6. (A)p β {G.cπ β’ _:cπ}
7. equivTerm(G.cπ;(A)p;q) β {G.cπ β’ _:(cπ)p}
8. cubical-lam(G;equivTerm(G.cπ;(A)p;q)) β {G β’ _:(cπ βΆ cπ)}
9. β[x:{G β’ _:decode(app(cubical-lam(G;equivTerm(G.cπ;(A)p;q)); A))}]
(cubical-subst(G;cubical-lam(G;equivTerm(G.cπ;(A)p;q));p;x)
β {G β’ _:decode(app(cubical-lam(G;equivTerm(G.cπ;(A)p;q)); B))})
β’ βB:{G β’ _:cπ}. (decode(app(cubical-lam(G;equivTerm(G.cπ;(A)p;q)); B)) = Equiv(decode(A);decode(B)) β {G β’ _})
2
1. [G] : CubicalSet{j}
2. [A] : {G β’ _:cπ}
3. [B] : {G β’ _:cπ}
4. [p] : {G β’ _:(Path_cπ A B)}
5. q β {G.cπ β’ _:cπ}
6. (A)p β {G.cπ β’ _:cπ}
7. equivTerm(G.cπ;(A)p;q) β {G.cπ β’ _:(cπ)p}
8. cubical-lam(G;equivTerm(G.cπ;(A)p;q)) β {G β’ _:(cπ βΆ cπ)}
9. β[x:{G β’ _:decode(app(cubical-lam(G;equivTerm(G.cπ;(A)p;q)); A))}]
(cubical-subst(G;cubical-lam(G;equivTerm(G.cπ;(A)p;q));p;x)
β {G β’ _:decode(app(cubical-lam(G;equivTerm(G.cπ;(A)p;q)); B))})
10. βB:{G β’ _:cπ}. (decode(app(cubical-lam(G;equivTerm(G.cπ;(A)p;q)); B)) = Equiv(decode(A);decode(B)) β {G β’ _})
β’ transEquiv{i:l}(G;A;p) β {G β’ _:Equiv(decode(A);decode(B))}
Latex:
Latex:
No Annotations
\mforall{}[G:j\mvdash{}]. \mforall{}[A,B:\{G \mvdash{} \_:c\mBbbU{}\}]. \mforall{}[p:\{G \mvdash{} \_:(Path\_c\mBbbU{} A B)\}].
(transEquiv\{i:l\}(G;A;p) \mmember{} \{G \mvdash{} \_:Equiv(decode(A);decode(B))\})
By
Latex:
((Intros\mcdot{}
THEN (InstLemma `cc-snd\_wf` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}c\mBbbU{}\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "csm-cubical-universe" (-1) THENA Auto)
THEN (InstLemma `csm-ap-term-universe` [\mkleeneopen{}parm\{[i' | j]\}\mkleeneclose{}; \mkleeneopen{}parm\{i\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}G.c\mBbbU{}\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN (Assert equivTerm(G.c\mBbbU{};(A)p;q) \mmember{} \{G.c\mBbbU{} \mvdash{} \_:(c\mBbbU{})p\} BY
(RWO "csm-cubical-universe" 0 THEN Auto))
THEN (Assert cubical-lam(G;equivTerm(G.c\mBbbU{};(A)p;q)) \mmember{} \{G \mvdash{} \_:(c\mBbbU{} {}\mrightarrow{} c\mBbbU{})\} BY
(InstLemma `cubical-lam\_wf` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{}]\mcdot{} THEN BHyp -1 THEN Auto)))
THEN (InstLemma `cubical-subst\_wf` [\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}c\mBbbU{}\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}cubical-lam(G;equivTerm(G.c\mBbbU{};(A)p;q))\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN Assert \mkleeneopen{}\mforall{}B:\{G \mvdash{} \_:c\mBbbU{}\}
(decode(app(cubical-lam(G;equivTerm(G.c\mBbbU{};(A)p;q)); B))
= Equiv(decode(A);decode(B)))\mkleeneclose{}\mcdot{})
Home
Index