Step * 1 of Lemma transEquivbeta-type_wf


1. CubicalSet{i|j}
2. {G ⊢ _:c𝕌}
⊢ λp.transEquivFun(p) ∈ TransportType(A)
BY
(Unfold `transport-type` 0
   THEN Unfold `uall` 0
   THEN (MemTypeCD THENW Auto)
   THEN InstLemma `cubical-term_wf` [⌜parm{i|j}⌝;⌜parm{i'}⌝;⌜G⌝;⌜(Path_c𝕌 B)⌝]⋅
   THEN Auto) }


Latex:


Latex:

1.  G  :  CubicalSet\{i|j\}
2.  A  :  \{G  \mvdash{}  \_:c\mBbbU{}\}
\mvdash{}  \mlambda{}p.transEquivFun(p)  \mmember{}  TransportType(A)


By


Latex:
(Unfold  `transport-type`  0
  THEN  Unfold  `uall`  0
  THEN  (MemTypeCD  THENW  Auto)
  THEN  InstLemma  `cubical-term\_wf`  [\mkleeneopen{}parm\{i|j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}(Path\_c\mBbbU{}  A  B)\mkleeneclose{}]\mcdot{}
  THEN  Auto)




Home Index