Step
*
1
of Lemma
transEquivbeta-type_wf
1. G : CubicalSet{i|j}
2. A : {G ⊢ _:c𝕌}
⊢ λp.transEquivFun(p) ∈ TransportType(A)
BY
{ (Unfold `transport-type` 0
   THEN Unfold `uall` 0
   THEN (MemTypeCD THENW Auto)
   THEN InstLemma `cubical-term_wf` [⌜parm{i|j}⌝;⌜parm{i'}⌝;⌜G⌝;⌜(Path_c𝕌 A B)⌝]⋅
   THEN Auto) }
Latex:
Latex:
1.  G  :  CubicalSet\{i|j\}
2.  A  :  \{G  \mvdash{}  \_:c\mBbbU{}\}
\mvdash{}  \mlambda{}p.transEquivFun(p)  \mmember{}  TransportType(A)
By
Latex:
(Unfold  `transport-type`  0
  THEN  Unfold  `uall`  0
  THEN  (MemTypeCD  THENW  Auto)
  THEN  InstLemma  `cubical-term\_wf`  [\mkleeneopen{}parm\{i|j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}(Path\_c\mBbbU{}  A  B)\mkleeneclose{}]\mcdot{}
  THEN  Auto)
Home
Index