Step * 2 of Lemma univ-trans-equiv_path


1. CubicalSet{j}
2. {G ⊢ _:c𝕌}
3. {G ⊢ _:c𝕌}
4. {G ⊢ _:Equiv(decode(A);decode(B))}
5. equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f) ∈ G.𝕀 +⊢ Compositon(equiv-path1(G;decode(A);decode(B);f))
6. cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f);equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))
   ∈ G.𝕀 ⊢ CompOp(equiv-path1(G;decode(A);decode(B);f))
7. decode(encode(equiv-path1(G;decode(A);decode(B);f);cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f)
                                                          ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))))
equiv-path1(G;decode(A);decode(B);f)
∈ {G.𝕀 ⊢ _}
8. compOp(encode(equiv-path1(G;decode(A);decode(B);f);cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f)
                                                          ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))))
cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f);equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))
∈ G.𝕀 ⊢ CompOp(equiv-path1(G;decode(A);decode(B);f))
9. transprt-fun(G;equiv-path1(G;decode(A);decode(B);f);equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))
trans-equiv-path(G;A;B;f)
∈ {G ⊢ _:(decode(A) ⟶ decode(B))}
⊢ transprt-fun(G;decode(encode(equiv-path1(G;decode(A);decode(B);f);
                               cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f)
                                   ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))));cop-to-cfun(
                                                                                                   compOp(encode(...;
                                                                                                                 ...))))
trans-equiv-path(G;A;B;f)
∈ {G ⊢ _:(decode(A) ⟶ decode(B))}
BY
(NthHypEqGen (-1) THEN EqCDA THEN Thin (-1) THEN Symmetry THEN InferEqualTypeGen) }

1
1. CubicalSet{j}
2. {G ⊢ _:c𝕌}
3. {G ⊢ _:c𝕌}
4. {G ⊢ _:Equiv(decode(A);decode(B))}
5. equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f) ∈ G.𝕀 +⊢ Compositon(equiv-path1(G;decode(A);decode(B);f))
6. cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f);equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))
   ∈ G.𝕀 ⊢ CompOp(equiv-path1(G;decode(A);decode(B);f))
7. decode(encode(equiv-path1(G;decode(A);decode(B);f);cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f)
                                                          ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))))
equiv-path1(G;decode(A);decode(B);f)
∈ {G.𝕀 ⊢ _}
8. compOp(encode(equiv-path1(G;decode(A);decode(B);f);cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f)
                                                          ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))))
cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f);equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))
∈ G.𝕀 ⊢ CompOp(equiv-path1(G;decode(A);decode(B);f))
⊢ {G ⊢ _:((equiv-path1(G;decode(A);decode(B);f))[0(𝕀)] ⟶ (equiv-path1(G;decode(A);decode(B);f))[1(𝕀)])}
{G ⊢ _:(decode(A) ⟶ decode(B))}
∈ 𝕌{[i j']}

2
1. CubicalSet{j}
2. {G ⊢ _:c𝕌}
3. {G ⊢ _:c𝕌}
4. {G ⊢ _:Equiv(decode(A);decode(B))}
5. equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f) ∈ G.𝕀 +⊢ Compositon(equiv-path1(G;decode(A);decode(B);f))
6. cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f);equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))
   ∈ G.𝕀 ⊢ CompOp(equiv-path1(G;decode(A);decode(B);f))
7. decode(encode(equiv-path1(G;decode(A);decode(B);f);cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f)
                                                          ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))))
equiv-path1(G;decode(A);decode(B);f)
∈ {G.𝕀 ⊢ _}
8. compOp(encode(equiv-path1(G;decode(A);decode(B);f);cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f)
                                                          ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))))
cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f);equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))
∈ G.𝕀 ⊢ CompOp(equiv-path1(G;decode(A);decode(B);f))
9. {G ⊢ _:((equiv-path1(G;decode(A);decode(B);f))[0(𝕀)] ⟶ (equiv-path1(G;decode(A);decode(B);f))[1(𝕀)])}
{G ⊢ _:(decode(A) ⟶ decode(B))}
∈ 𝕌{[i j']}
⊢ transprt-fun(G;equiv-path1(G;decode(A);decode(B);f);equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))
transprt-fun(G;decode(encode(equiv-path1(G;decode(A);decode(B);f);
                               cfun-to-cop(G.𝕀;equiv-path1(G;decode(A);decode(B);f)
                                   ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))));cop-to-cfun(
                                                                                                   compOp(encode(...;
                                                                                                                 ...))))
∈ {G ⊢ _:((equiv-path1(G;decode(A);decode(B);f))[0(𝕀)] ⟶ (equiv-path1(G;decode(A);decode(B);f))[1(𝕀)])}


Latex:


Latex:

1.  G  :  CubicalSet\{j\}
2.  A  :  \{G  \mvdash{}  \_:c\mBbbU{}\}
3.  B  :  \{G  \mvdash{}  \_:c\mBbbU{}\}
4.  f  :  \{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}
5.  equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f)
      \mmember{}  G.\mBbbI{}  +\mvdash{}  Compositon(equiv-path1(G;decode(A);decode(B);f))
6.  cfun-to-cop(G.\mBbbI{};equiv-path1(G;decode(A);decode(B);f)
              ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))
      \mmember{}  G.\mBbbI{}  \mvdash{}  CompOp(equiv-path1(G;decode(A);decode(B);f))
7.  decode(encode(equiv-path1(G;decode(A);decode(B);f);
                                  cfun-to-cop(G.\mBbbI{};equiv-path1(G;decode(A);decode(B);f)
                                          ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))))
=  equiv-path1(G;decode(A);decode(B);f)
8.  compOp(encode(equiv-path1(G;decode(A);decode(B);f);
                                  cfun-to-cop(G.\mBbbI{};equiv-path1(G;decode(A);decode(B);f)
                                          ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))))
=  cfun-to-cop(G.\mBbbI{};equiv-path1(G;decode(A);decode(B);f)
            ;equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f))
9.  transprt-fun(G;equiv-path1(G;decode(A);decode(B);f);equiv-path2(G;decode(A);decode(B);...;...;f))
=  trans-equiv-path(G;A;B;f)
\mvdash{}  transprt-fun(G;decode(...);cop-to-cfun(
                                                            compOp(encode(equiv-path1(G;decode(A);decode(B);f);
                                                                                        ...))))
=  trans-equiv-path(G;A;B;f)


By


Latex:
(NthHypEqGen  (-1)  THEN  EqCDA  THEN  Thin  (-1)  THEN  Symmetry  THEN  InferEqualTypeGen)




Home Index