Nuprl Definition : univalence_t
univalence_t{i:l}(G) ==
  (λbij-contr(G.c𝕌; Σ c𝕌 Equiv(decode((q)p);decode(q)); cubical-sigma-fun(G.c𝕌;c𝕌;Equiv(decode((q)p);decode(q));UA);
  cubical-sigma-fun(G.c𝕌;c𝕌;(Path_c𝕌 (q)p q);44); 55; 66; singleton-contr(G.c𝕌;c𝕌;q)))
Definitions occuring in Statement : 
univ-a: UA, 
universe-decode: decode(t), 
cubical-universe: c𝕌, 
bij-contr: bij-contr(X; A; f; g; cA; b; c), 
singleton-contr: singleton-contr(X;A;a), 
cubical-equiv: Equiv(T;A), 
path-type: (Path_A a b), 
cubical-sigma-fun: cubical-sigma-fun(G;A;B;f), 
cubical-sigma: Σ A B, 
cubical-lambda: (λb), 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
natural_number: $n
Definitions occuring in definition : 
cubical-lambda: (λb), 
bij-contr: bij-contr(X; A; f; g; cA; b; c), 
cubical-sigma: Σ A B, 
cubical-equiv: Equiv(T;A), 
universe-decode: decode(t), 
univ-a: UA, 
cubical-sigma-fun: cubical-sigma-fun(G;A;B;f), 
path-type: (Path_A a b), 
csm-ap-term: (t)s, 
cc-fst: p, 
natural_number: $n, 
singleton-contr: singleton-contr(X;A;a), 
cube-context-adjoin: X.A, 
cubical-universe: c𝕌, 
cc-snd: q
FDL editor aliases : 
univalence_t
Latex:
univalence\_t\{i:l\}(G)  ==
    (\mlambda{}bij-contr(G.c\mBbbU{};  \mSigma{}  c\mBbbU{}  Equiv(decode((q)p);decode(q));
    cubical-sigma-fun(G.c\mBbbU{};c\mBbbU{};Equiv(decode((q)p);decode(q));UA);
    cubical-sigma-fun(G.c\mBbbU{};c\mBbbU{};(Path\_c\mBbbU{}  (q)p  q);44);  55;  66;  singleton-contr(G.c\mBbbU{};c\mBbbU{};q)))
Date html generated:
2018_05_23-PM-06_26_31
Last ObjectModification:
2017_11_20-AM-10_20_23
Theory : cubical!type!theory
Home
Index