Step
*
1
1
of Lemma
eu-add-length-comm
1. e : EuclideanPlane
2. x : Point
3. O_X_x
4. y : Point
5. O_X_y
⊢ (extend Ox by Xy) = (extend Oy by Xx) ∈ Point
BY
{ ((Assert ¬(O = X ∈ Point) BY
Auto)
THEN (Assert ¬(O = x ∈ Point) BY
((D 0 THENA Auto) THEN (RevHypSubst (-1) 3 THENA Auto) THEN FLemma `eu-between-eq-same` [3] THEN Auto))
THEN (Assert ¬(O = y ∈ Point) BY
((D 0 THENA Auto)
THEN (RevHypSubst (-1) 5 THENA Auto)
THEN FLemma `eu-between-eq-same` [5]
THEN Auto))) }
1
1. e : EuclideanPlane
2. x : Point
3. O_X_x
4. y : Point
5. O_X_y
6. ¬(O = X ∈ Point)
7. ¬(O = x ∈ Point)
8. ¬(O = y ∈ Point)
⊢ (extend Ox by Xy) = (extend Oy by Xx) ∈ Point
Latex:
Latex:
1. e : EuclideanPlane
2. x : Point
3. O\_X\_x
4. y : Point
5. O\_X\_y
\mvdash{} (extend Ox by Xy) = (extend Oy by Xx)
By
Latex:
((Assert \mneg{}(O = X) BY
Auto)
THEN (Assert \mneg{}(O = x) BY
((D 0 THENA Auto)
THEN (RevHypSubst (-1) 3 THENA Auto)
THEN FLemma `eu-between-eq-same` [3]
THEN Auto))
THEN (Assert \mneg{}(O = y) BY
((D 0 THENA Auto)
THEN (RevHypSubst (-1) 5 THENA Auto)
THEN FLemma `eu-between-eq-same` [5]
THEN Auto)))
Home
Index